

11th Collaboration Meeting of the BM@N Experiment at the NICA Facility

Neutron energy reconstruction with HGND prototype in Xe+CsI@3.8 AGeV run

A. Zubankov on behalf of the HGND team

- The High Granular Neutron Time-of-Flight Detector (HGND) at the BM@N experiment is under development for measuring the energy of neutrons produced in nucleus-nucleus collisions.
- For the first time, small prototype of the HGND was used in Xe+CsI at 3.0 and 3.8 AGeV run at the BM@N.
- The multilayer (absorber/scintillator) and high granular structure of the ToF HGND makes it possible to identify and measure the energies of neutrons.
- Neutron energy reconstruction with HGND prototype at 0° and 27° positions in Xe+CsI@3.8 AGeV run will be discussed.

HGND prototype design

- Scint. layer **Veto** 120x120x25 (мм)
- 1st (electromagnetic) part:
 5 layers: Pb (8mm) + Scint. (25mm)
 - + PCB + air
- 2nd (hadronic) part:
 9 layers: Cu (30mm) + Scint. (25mm)
 + PCB + air

Scint. cell – 40 x 40 x 25 mm³ Total number of cells – 9+45+81=135 Total size – 12 x 12 x 82.5 cm³ Total length ~ 2.5 λ_{int}

Necessary to separate showers

from gamma quanta

HGND prototype in the Xe run of BM@N on Xe ion beam

27° position:

Measurements of the neutron spectrum at ~ midrapidity.

0° position:

Test and calibration with known neutron energy (energy of a beam of spectator neutrons)

HGND calibration

1. Amplitude normalization

2. Time shift for all channels by the average fit value

HGND calibration

Time-amplitude

correction of signals made it possible to get rid of the dependence of time on signal amplitude, which improved the time resolution by ~2.4 times.

Estimating the time resolution of cells

Selection – hits in 4 consecutive layers: (i) & (i+1) & (i+2) & (i+3), 3 of which are used to calculate the time resolution of the cell in layers 6 – 11.

1st step 1-3 layers

$$\sigma_{1}^{2} + \sigma_{2}^{2} = \sigma_{12}^{2}$$

$$\sigma_{2}^{2} + \sigma_{3}^{2} = \sigma_{23}^{2}$$

$$\sigma_{1}^{2} + \sigma_{3}^{2} = \sigma_{13}^{2}$$

$$\sigma_{2} = \sqrt{((\sigma_{12}^{2} + \sigma_{13}^{2} - \sigma_{23}^{2})/2)}$$

$$\sigma_{3}^{2} = \sqrt{((\sigma_{12}^{2} + \sigma_{23}^{2} - \sigma_{13}^{2})/2)}$$

$$\sigma_{3}^{2} = \sqrt{((\sigma_{13}^{2} + \sigma_{23}^{2} - \sigma_{12}^{2})/2)}$$

Average time resolution $\overline{\sigma_2}$ = 134±29 ps

A. Zubankov

H

Estimation of γ-background

nDetProfileRad

Integral 0.0007241

Entries

Std Dev

Mean

1515

2.174

1.956

Criterion for selecting events with " γ -quanta":

- Veto == 0
- Ampl > 0.5 MIP
- Hits in 2 & 3 & 4 layers in module

=> 4.52 X_0 or 0.266 λ_{int} layer 11 12 13 14 15 5 6 8 9 10 7

For inverted HGND prototype:

Hits in 14 & 13 layers in module => $4.36 X_0$ ٠

Beam	Cell 1 (layer 3 didn't work)	<i>Cell 2</i> 0.0092% ±0.0009%	Cell 3 0.0097% ±0.0009%
	<i>Cell 4</i> 0.0202% ±0.0013%	<i>Cell 5</i> 0.0084% ±0.0008%	Cell 6 0.0099% ±0.0009%
	<i>Cell 7</i> 0.0221% ±0.0014%	<i>Cell 8</i> 0.0118% ±0.0010%	Cell 9 0.0102% ±0.0009%

Beam	Cell 3 0.0287% ±0.0015%	Cell 2 0.0131% ±0.0010%	<i>Cell 1</i> 0.0117% ±0.0010%
	Cell 6 0.0287% ±0.0015%	Cell 5 0.0131% ±0.0010%	<i>Cell 4</i> 0.0227% ±0.0013%
	Cell 9 0.0340% ±0.0016%	Cell 8 0.0117% ±0.0010%	<i>Cell 7</i> 0.0146% ±0.0011%

Gamma rejection efficiency is the same in both configurations

Xe + CsI (2%) @ 3.8 AGeV HGN 27 deg. pos. Total number of events: 1 Xe ion, BC1S + CCT2 - 1.2M (100%) + Veto cut – 68.2k (5.67%)

Fraction of γ -ev. in full HGND prototype (all cells): 0.173 %

Comparable to simulation (0.1 - 0.2%)

29.11.2023

Reconstruction of the neutron energy spectrum

Criteria for selecting events with neutrons:

- 1 Xe ion, BC1S + CCT2
- Veto == 0, Ampl > 0.5 MIP, time cut

Reconstruction of energy by maximum speed

Without efficiency correction

Run 7566 - HGND rotated by 2/70 radians Csl 2% Total number of events – 687k BC1S + CCT2 – 336k Vertex ± 1.5 – 196k Veto – 6.5k BT*(prescale factor+1) - 13k*2k

A. Zubankov

Run 7549 Csl 2% Total number of events – 1M BC1S + CCT2 - 386k Vertex $\pm 1.5 - 269k$ Veto – 9k $BT^*(prescale factor+1) - 21k^*2k$

	n/ev.
Position	(BC1S+CCT2)
27 deg.	2,33%
27 deg. 2/70 rad.	1,93%

- Time-amplitude correction of signals improved the time resolution by 2.4 times
- The average time resolution of cells was 134±29 ps
- The number of events with γ-quanta was 0.173%, which is comparable to simulation
- The energy spectrum of neutrons was reconstructed for 2 positions of HGND prototype
- Events with detected neutrons from an empty target are only 14% of the number of events with detected neutrons from the CsI(2%) target

Thank you for your attention!