А.М.Рождественский

Исследование редких распадов пионов с помощью установки PIBETA

(В связи с выборами на должность снс)

B. Pontecorvo
μ-e universality,
1947.

"We assume that this is Бруно Понтекори significant and wish to discuss the possibility of a fundamental analogy between β - processes and processes of emission or absorption of charged mesons" (muons) Phys.Rev., v72(1947)246.

V.I.Rykalin

 $\pi^+ \rightarrow \pi^0 e^+ v$

1962 год

С середины 60-х по наст. время

Синхрофазотрон ЛЯП:

ММИС (Магнитный Многозазорный Искровой Спектрометр) Поиск запрещенного распада µ+→e+e-e+

АРЕС (Анализатор РЕдких Событий) Исследование редких распадов пионов и мюонов

Мезонная фабрика в PSI:

PIBETA (PEN)

Изучение бета распада заряженного пиона,

радиационного распада пиона и мюона, распада пиона на позитрон и нейтрино

Physics goals for the PIBETA (PEN)

- Study β decay of the pion $\pi^+ \to \pi^0 e^+ \nu_e$
 - $\circ~$ Precise measurment of V_{ud} element of the CKM matrix
- Study pion radiative decay $\pi^+ \rightarrow e^+ \nu_e \gamma$
 - Structure of the pion, check of the CVC hypothesis, deviations from V A form of $\mathcal{L}_{\text{weak}}$
- Study muon radiative decay $\mu^+ \rightarrow e^+ \nu \overline{\nu} \gamma$
 - Precise test of the weak interaction, deviations from V A form of $\mathcal{L}_{\text{weak}}$
- Study nonradiative decay $\pi^+ \rightarrow e^+ \nu_e$
 - $\circ~$ electron-muon universality

The PEN calorimeter consists of 240 pure CsI crystals. The inner radius of the calorimeter is 26 cm, and the module axial length is 22 cm; corresponding to 12 CsI radiation lengths $(X_0 = 1.85cm)$

Weight is 1.6 T.

- Fast component decay time 7 ns
- Slow component decay time 35 ns
- Fast/Total >0.76
- total solid angle ~ $0.77 \cdot 4\pi$
- Angle resolution ~2°
- ΔE/E ~ 4-5%
- Time resolution ~ 0.68 ns

Csl (pure) Calorimeter

МWPC: трековый детектор должен обладать следующими свойствами

Высокой эффективностью регистрации заряженных частиц;

Возможностью работать при больших загрузках (10⁷ с⁻¹);

Стабильностью в работе и радиационной стойкостью;

Цилиндрической геометрией;

Малым количеством вещества для уменьшения вероятности конверсии γ-квантов в е⁺е⁻-пары;

Разрешение по Х, Ү и Z

полученное из экспериментальных данных

Угловое разрешение по ф≈0.75[°] Разрешение по z ~0.97мм Разрешение по x,y ~0.6-0.7мм

Plastic Hodoscope

It supplements the MWPC tracking and CsI calorimetry by providing:

(1) efficient charged particle detection, particularly when combined with the MWPC data;

(2) reliable discrimination between minimum ionizing particles (cosmic muons, positrons/electrons) and protons;

(3) crude measurements of charged particle azimuthal angle 9 degree;

(4) precise charged particle timing information +-0.3 ns

PSI (вид сверху)

Расположение установки на канале тЕ1 ускорителя

The PEN Collaboration

D.Počanić, ^a A. van der Schaaf, ^g L.P.Alonzi, ^a V.A.Baranov, ^c W.Bertl, ^b M.Bychkov, ^a Yu.M.Bystritsky, ^c E.Frlež, ^a C.J.Glaser, ^a V.A.Kalinnikov, ^c N.V.Khomutov, ^c A.S.Korenchenko, ^c S.M.Korenchenko, ^c M.Korolija, ^f T.Kozlowski, ^d N.P.Kravchuk, ^c N.A.Kuchinsky, ^c M.C.Leman, ^a D.Mekterović, ^f D.Mzhavia, ^{c,e} A.Palladino, ^aP.Robmann, ^g A.M.Rozhdestvensky, ^c S.N.Shkarovskiy, ^c U.Straumann, ^g I.Supek, ^f P.Truől, ^g Z.Tsamalaidze, ^{c,e} E.P.Velicheva, ^c M.G.Vitz, ^a V.P.Volnykh^c

a)Department of Physics, University of Virginia, Charlottesville, VA 22904-4714, USA b)Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland c)Joint Institute for Nuclear Research, RU-141980 Dubna, Russia d)Institute for Nuclear Studies, PL-05-400 Swierk, Poland e)IHEP, Tbilisi, State University, GUS-380086 Tbilisi, Georgia f)Rudjer Bošković Institute, HR-10000 Zagreb, Croatia g)Physik-Institut der Universität Zürich, CH-8057 Zürich, Switzerland

$\pi^+ \rightarrow \pi^0 e^+ v$

Pion beta decay rates offers on of the most precise means of testing the concerved vector current hypothesis (CVC) and studing the weak u-d quark mixing.

The SM description of the $\pi\beta$ decay is theoretically unambigous with a 0.1% uncertainty, but a small ~10⁻⁸ branching ratio poses significant experimental challenges.

The Pion-Beta Decay Branching Ratio

 $\pi \xrightarrow{+} \pi \stackrel{0}{\to} \pi \stackrel{1}{v_e}$ $BR_{\pi\beta} \sim 1 \times 10^{-5}$ Pure vector transition: $0^- \rightarrow 0^-$ Theoretical decay rate at tree level: $\frac{1}{\tau_0} = \frac{G_{F}^2 |V_{ud}|^2}{30\pi^3} \left(1 - \frac{\Delta}{2M_{++}}\right)^3 \Delta^5 f(\varepsilon, \Delta)$ $= 0.40692(22)|V_{ud}|^2(s^{-1})$ With radiative and loop corrections we get: $\frac{1}{\tau} = \frac{1}{\pi} (1 + \delta),$ so that the branching ratio is - (1 + *ð*) $BR_{\pi\beta}$ - p. 4/23

 $= 1.0593(6) \cdot 10^{-8} \left(1 + \delta\right) |V_{ud}|^2.$

The Pion Beta Decay Radiative Corrections

(1) In the light-front quark model

- W. Jaus, Phys. Rev. D 63 (2001) 053009
- total RC for the pion beta decay:

 $\delta = (3.223 \pm 0.002) \times 10^{-2}.$

- (2) in the chiral perturbation theory
 V. Cirigliano, M. Knecht, H. Neufeld and H. Pichl, Eur. Phys. J. C 27 (2003) 255-262
 • χPT with e-m terms up to O(e²p²)
 - $\mathsf{BR}_{\pi\beta} \to |V_{ud}|$, theoretical uncertainty of $5 \cdot 10^{-4}$

Measured time difference between two coincident photons from π^{0} produced via decay $\pi^{+} \rightarrow \pi^{\circ} e^{+} v$ in the active target.

Histogram of the $\gamma-\gamma$ opening angle in the $\pi\beta$ decay.

Histogram of time difference between the beam pion stop and the $\pi^+ \rightarrow \pi^\circ e^+ \nu$ decay events (dots); curve: pion lifetime.

Pion Beta Decay Experiments (B x 10⁸)

1.037±0.002

1.036±0.004±0.005

1.026±0.039 1.00-0.10+0.08 1.07±0.21 1.10±0.26 1.1±0.2 0.97±0.20 1.15±0.22 **Standard Model**

6x10⁴ **PIBETA** 2004

1224 McFarlane 1985

- 332 Depommier 196838 Bacastow 1965Bertram 1965
 - 43 Dunaitsev 1965
 - 36 Bartlet 1964 52 Depommier 1963

A.F. Dunaitsev, V. I. Petrukhin, Yu. D. Prokoshkin, V. I. Rykalin (Dubna, JINR) Published in Zh.Eksp.Teor.Fiz. 42(1962)1423. Status of CKM Unitarity $|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 1$

 $|V_{ud}| = 0.9728 \pm 0.0030$ PIBETA PDG (2016): $|V_{ud}| = 0.97417 \pm 0.00021$ $|V_{us}| = 0.2248 \pm 0.0006$ from K_{e3} decay $|V_{\mu\nu}| = 0.00409 \pm 0.00039$ from **B** decays $|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 0.9996 \pm 0.0005$

Amplitude of Decay

 $\pi \rightarrow e v \gamma$

$\pi \rightarrow e \nu \gamma$ Differential Branching Ratio

$$\frac{d\Gamma_{\pi \to ev\gamma}}{dxdy} = \frac{\alpha}{2\pi} \Gamma_{\pi \to ev} \left\{ IB(x,y) + \left(\frac{F_V m_{\pi}^2}{2f_{\pi} m_e}\right)^2 \left[(1+\gamma)^2 SD^+(x,y) + (1-\gamma)^2 SD^-(x,y) \right] + \frac{F_V m_{\pi}}{f_{\pi}} \left[(1+\gamma)S_{int}^+(x,y) + (1-\gamma)S_{int}^-(x,y) \right] \right\},$$

$$IB(x,y) = \frac{(1-y)(1+(1-y))^2}{x^2(x+y-1)} \qquad S_{int}^+(x,y) = -\frac{1}{x}(1-x)(1-y)$$

$$SD^+(x,y) = (1-x)(x+y-1)^2 \qquad S_{int}^-(x,y) = \frac{1}{x}(1-y)\left(1-x+\frac{x^2}{x+y-1}\right)$$

Weak form factors

$$\mathbf{x} = \frac{2\mathbf{E}_{\gamma}}{\mathbf{m}_{\pi}}, \mathbf{y} = \frac{2\mathbf{E}_{e^{+}}}{\mathbf{m}_{\pi}} \qquad \gamma = \frac{F_{A}}{F_{V}}$$

 $\mathbf{F}_{\mathbf{v}}$ calculated from the measured π^0 lifetime, using the conserved vector current (CVC)

$F_A \times 10^4$	reference	note
106 ± 60	Bolotov et al. (1990)	$(F_T=-56\pm17)$
135 ± 16	Bay et al. (1986)	
60 ± 30	Piilonen et al. (1986)	
110 ± 30	Stetz et al. (1979)	
116 ± 16	world average (PDG 2004)	

Data analysis

The RPD data were grouped into three kinematic regions:

A:
$$E_e, E_{\gamma} \ge 51.7 \text{ Me}$$

- B: $E_e \ge 20.0 \text{ MeV}, E_y \ge 55.6 \text{ MeV}$
- C: $E_e \ge 55.6 \text{ MeV}, E_y \ge 20.0 \text{ MeV}$

The region A is the most sensitive to the structure parameters of the pion. The region C can be used to determine the dependence of the pion form factors on the momentum squared transferred to the lepton pair. For all regions opening angle $\theta_{e\gamma} > 40^{\circ}$.

Data Analysis 99-01: $\pi^+ \rightarrow e^+ \nu_e \gamma$

Data Analysis 04: $\pi^+
ightarrow {
m e}^+
u_{
m e} \gamma$

Theoretical Model

The theoretical model including tensor interaction and suggested by Chizhov (Phys. Part. Nucl. Lett., 2, (2005), 7)

$$\frac{d\Gamma_{\pi \to e_{VY}}}{dxdy} = \frac{\alpha}{2\pi}\Gamma_{\pi \to e_{V}} \left\{ IB + \left[(f_{V} + f_{A})^{2} SD^{+} + (f_{V} - f_{A})^{2} SD^{-} \right] + 2\sqrt{\beta} \left((f_{V} + f_{A})SD^{+}_{int} + (f_{V} - f_{A})^{2} SD^{-}_{int} \right) + 2\left(2f_{T} (f_{T} - f_{T'}) + f_{T'}^{2} \right) T_{1} + 2\left(2(f_{T} - f_{T'}) + f_{T'}^{2} x \right) T_{2} + RC \right\}$$

$$\beta \equiv \left(\frac{\mathrm{m}_{\mathrm{e}}}{\mathrm{m}_{\pi}}\right) = 1.34 \cdot 10^{-5}$$

$$\mathbf{f}_{\mathbf{V},\mathbf{A},\mathbf{T},\mathbf{T}'} = \frac{\mathbf{m}_{\pi}^{2}}{2\mathbf{m}_{e}\mathbf{f}_{\pi}} \mathbf{F}_{\mathbf{V},\mathbf{A},\mathbf{T},\mathbf{T}'}$$

$$T_{1} = (1 - y)(x + y - 1)$$

 $T_{2} = \frac{1 - y}{x}$

Radiative Corrections E. Kuraev, Yu. Bystritsky, E. Velicheva (Phys. Rev. D 69, (2004), 114004)

	A:	B:	C :
(B _{RC}) _{LO}	- 0.8×10 ⁻⁹	-0.704×10^{-9}	-3.74×10^{-9}
(B _{RC}) _{NLO}	0.008×10^{-9}	- 0.11×10 ⁻⁹	-0.037×10^{-9}
$\frac{(B_{RC})_{LO}}{B}$, %	-3.56	-1.56	-4.74
$\frac{(B_{\mathtt{RC}})_{\mathtt{NLO}}}{B}, \mathscr{Y}_{0}$	0.036	-0.24	-0.05

Value of the Form Factors:

Assuming CVC hypothesis the vector form factor $\mathbf{F}_{\mathbf{v}}$ (0) is directly related to the $\pi^0 \rightarrow \gamma\gamma$ amplitude and can be extracted from the experimental width of the decay

$$F_{V}(0) = \frac{1}{\alpha} \sqrt{\frac{2\Gamma(\pi^{0} \to \gamma\gamma)}{\pi m_{\pi^{0}}}} = 0.0262(9) \text{ or } |F_{V}(0)| = \frac{1}{\alpha} \sqrt{\frac{2\hbar}{\pi \tau_{\pi^{0}} m_{\pi}}} = 0.0259(9)$$

(V. G. Vaks& B. L. Ioffe, Nuovo Cimento 10, (1958), 342)

Momentum squared transferred to the lepton pair $q^2 = 1 - 2E_{\gamma} / m_{\pi}$ $F_V(q^2) = F_V(0)(1 + aq^2)$ $F_A(q^2) = F_A(0)$

Scheme of Minimization

▶ 1) fixed (free) value of $\mathbf{F}_{\mathbf{v}}$ and value of parameters $\mathbf{a}, \mathbf{F}_{\mathbf{A}}$ were free

Data Analysis 99-01: $\pi^+
ightarrow {
m e}^+
u_{
m e} \gamma$

Data Analysis 04: $\pi^+ \rightarrow e^+ \nu_e \gamma$

$$\pi^+ \rightarrow e^+ v_e \gamma$$

Upper limit on tensor value -5.2 x 10⁻⁴ < F_T < 4 x 10⁻⁴ 90% CL

Pion polarizability (Terent`ev Pisma ZhETP 15, 1972, 299)

 $\alpha_E^{\text{LO}} = -\beta_M^{\text{LO}} = (2.783 \pm 0.023_{\text{exp}}) \times 10^{-4} \text{ fm}^3$

Number of events of rare pion and muon decays, recorded on PIBETA facility and in all previous experiments

Decay	PIBETA	Statistics
	statistics	worldwide
$\pi^+ \rightarrow \pi^0 + e^+ + v_e$	> 5 x 10 ⁴	1,77 x 10 ³
$\pi^+ \rightarrow e^+ + \nu_e$	> 5,8 x 10 ⁸	0,35 x 10 ⁶
$\pi^+ \rightarrow e^+ + v_e + \gamma$	> 6 x 10 ⁴	1,35 x 10 ³
$\mu^{+} \rightarrow e^{+} + v_{e} + v_{\mu} + \gamma$	> 5 x 10 ⁵	8,5 x 10 ³

$\pi \rightarrow ev$

Pion decay, lepton universality

Physics Motivation / Theory

$$B_{e/\mu}^{Theor} = \frac{\Gamma(\pi \to ev_e + \pi \to ev_e\gamma)}{\Gamma(\pi \to \mu v_\mu + \pi \to \mu v_\mu\gamma)} = \left(\frac{g_e}{g_\mu}\right)^2 \left(\frac{m_e}{m_\mu}\right)^2 \frac{\left(1 - m_e^2/m_\mu^2\right)^2}{\left(1 - m_\mu^2/m_\pi^2\right)^2} (1 + \delta R)$$

Modern SM calculations:

1.2352(5) x 10⁻⁴ Marciano and Sirlin, Phys.Rev.Lett. <u>71</u> (1993)3629 1.2354(2) x 10⁻⁴ Decker and Finkemeier, Nucl.Phys. <u>B438</u> (1995)17

Chiral PerturbationTheory:

1.2356(1) x 10⁻⁴ Cirigliano and Rosell, Phys.Rev.Lett. <u>99</u> (2007) 231801

π_{e2} Decay and the SM

 $B(\pi \to e\nu) = \Gamma(\pi_{e2})/\Gamma(\pi_{\mu 2})$ given in SM to 10^{-4} accuracy; dominated by helicity suppression (V - A). Deviations from this rate can be caused by:

- (a) charged Higgs in theories with richer Higgs sector than SM,
- (b) PS leptoquarks in theories with dynamical symmetry breaking,
- (c) V leptoquarks in Pati-Salam type GUT's,
- (d) loop diagrams involving certain SUSY partner particles,
- (e) non-zero neutrino masses (and mixing).

Proc's. (a)–(d) \Rightarrow PS currents. Most general 4-fermion π_{e2} amplitude:

$$\begin{aligned} \frac{G_{\mathsf{F}}}{\sqrt{2}} \Big[\left(\bar{d} \gamma_{\mu} \gamma^{5} u \right) \left(\bar{\nu}_{e} \gamma^{\mu} \gamma^{5} (1 - \gamma^{5}) e \right) f_{\mathsf{AL}}^{e} \\ &+ f_{\mathsf{PL}}^{e} \left(\bar{d} \gamma^{5} u \right) \left(\bar{\nu}_{e} \gamma^{5} (1 - \gamma^{5}) e \right) \Big] + \mathsf{r.h.} \ \nu \ \mathsf{term} \end{aligned}$$

In the SM: $f_{AL}^{\ell} = 1$, while $f_{xR}^{\ell} = f_{Px}^{\ell} = 0$, with $\ell = e, \mu$.

Experiment

 $(1.2344\pm0.0023(stat)\pm0.0019(syst)) \times 10^{-4}$ *TRIUMF, Phys.Rev.Lett.* 115 (2015) 071601 $(1.2265\pm0.0034(stat)\pm0.0044(syst)) \times 10^{-4}$ *TRIUMF, Phys.Rev* D49 (1994) 28 $(1.2346\pm0.0035(stat)\pm0.0036(syst)) \times 10^{-4}$ *PSI, Phys.Rev.Lett.* 70 (1993) 17 *New average (PDG 2016):* $(1.2327\pm0.0023) \times 10^{-4}$

PEN Events

Модернизация установки для сеансов в 2008-2010г.

mTPC:

- мониторинг распределения остановок π^+ и μ^+ в мишени;
- восстанавление вершины распада пиона в активной мишени и коррекция потерь энергии π^+ , μ^+ и e^+ с учетом неоднородности светосбора в активной мишени;
- определение длины треков е⁺ в мишени для определения потерь энергии е+ для каждого отдельного события;
- исключение событий с π^+ и μ^+ , распадающимися на лету.

Energy and timing

PEN Experiment Vital Statistics

	2008	2009	2010	Total
Calendar Days	111	98	68	277
π^+ Stops	$7.46 \cdot 10^{10}$	1.31 · 10 ¹¹	1.64 · 10 ¹¹	$3.70\cdot10^{11}$
Low Thresh. Trig.	1.70 · 10 ⁵	8.61 · 10 ⁷	$7.14 \cdot 10^7$	1.58 · 10 ⁸
High Thresh. Trig.	4.38 · 10 ⁶	7.80 · 10 ⁶	$1.01 \cdot 10^{7}$	$2.23 \cdot 10^7$
Tail Trig.	_	$5.47 \cdot 10^{7}$	$4.47\cdot 10^7$	$9.97\cdot 10^7$

PEN total/clean π_{e2} 's: $1.8 \cdot 10^7 / 1.2 \cdot 10^7$ PEN total/clean $\pi \rightarrow \mu \rightarrow e$: $8.6 \cdot 10^7 / 5.7 \cdot 10^7$ PEN total/clean π_{e2} 's tail trigger events: $1.9 \cdot 10^6 / 250,000$

Compare TRIUMF PIENU Exp. (Bryman *et al.*): $4 \cdot 10^6 \pi_{e2}$ decays

Спасибо за внимание!

PIENU (TRIUMF)

RESULTS

Region	B _{th}	Bexp	Events
	(x10 -8)	(x10 -8)	(x10 ³)
A	2.599(11)	2.614(21)	35.9
B	14.45(2)	14.46(22)	16.2
С	37.49(3)	37.69(46)	13.3
Tot.	74.11(3)	73.86(54)	65.4

Эксперимент РЕМ

Beam:

75-58 MeV/c R(π-stop) ~ 20000 1/сек

Замена:

мишень, замедлитель, пучковый счетчик электроника (digitizer) 2Ггц / 10 бит

Добавлена времяпроекционная камера mTPC (ЛЯП)

Регистрация событий

 π^+ останавливается в мишени ($\approx 15000 \pi^+/cek$).

Распад пиона детектируется во временных воротах шириной 250нсек, начинающихся за 40нсек до остановки пиона.

Сигналы с пучкового счетчика, замедлителя и активной мишени оцифровываются (0.5нсек/канал):

 $\pi \rightarrow ev$ (2 импульса в мишени: остановка π и сигнал от е) $\pi \rightarrow \mu \rightarrow e$ (3 импульса в мишени от π , μ и е)