Status of reconstruction in ECAL and barrel-endcap bridging

Andrei Maltsev (JINR, Dubna)

SPD Physics & MC meeting 20.09.2023

Requirements on ECAL design from physics analyses

Prompt photons:

- interested in $p_T > 3-4$ GeV, high background from π^0 , η , etc.
- Requirement: energy resolution at high (> 5 GeV) energies, π/γ separation

Charmonia (χ_{c1} , χ_{c2}):

- need to separate $\chi_{c1},\,\chi_{c2}$ from decay into J/ $\psi\,\gamma$
- Requirement: energy resolution at low (< 1 GeV) energies

Online polarizability measurement:

- measure azimuthal asymmetry of π^0 production
- Requirement: energy and position resolution, π/γ separation

Current reconstruction workflow

1) per-cell energy calibration: energy deposition in scintillator layers \rightarrow energy deposition in the entire cell

2) clustering: identifying groups of neighboring cells

3) reconstruction: get particle position and energy from cluster using empirical expressions, barrel/endcap are reconstructed separately

4) π/γ ID: based on cluster shape analysis

Caveats:

- empirical calibrations in the reconstruction step sensitive to ECAL setup, maintenance is timeconsuming
- no reconstruction of individual photons in case of $\pi 0$ ID (yet)
- only full simulation of ECAL showers
- barrel and endcap reconstructed are not bridged at this point

Barrel/endcap bridging

• not implemented yet: if a photon hits the gap between barrel and endcap, two clusters are reconstructed

Questions:

- what is the selection criteria for bridged clusters?
- how to reconstruct energy?
- how to reconstruct position?

Gamma ID efficiency: events with 1 cluster, PID=22

Energy reconstruction of bridged clusters

Comparing two reconstructions:

1) standard reconstruction in barrel for polar angle $45^{\circ} < \theta < 60^{\circ}$

2) bridged reconstruction where energy was reconstructed as sum of barrel annd endcap clusters

Bias within acceptable limits Strange(?) effect with better energy resolution at low energies

Position reconstruction of bridged clusters

Two methods:

1) position of the bridged cluster is the position of the barrel cluster

2) position of the bridged cluster is the weighted sum of positions of barrel/endcap clusters

6

Position of barrel cluster still has some bias: possibly due to energy-dependent position corrections \rightarrow for position correction, use sum of barrel+endcap energies, not barrel energy?

Selection criteria for bridging

proposed criteria: $0.805 < \cos(\theta_{\text{barrel}}) < 0.85$; $\Delta(\cos(\theta)) < 0.03$; $|\Delta \phi| < 0.04$

Conclusions and outlook

- When bridging, summing energies of barrel and endcap clusters is sufficiently precise for energy reconstruction;
- for position reconstruction, taking the position of the barrel cluster is sufficient as temporary solution: need updated energy-dependent calibrations for gap region;
- selection criteria for bridging two clusters: $0.805 < \cos(\theta_{\text{barrel}}) < 0.85$; $\Delta(\cos(\theta)) < 0.03$; $|\Delta \phi| < 0.04$.

Next steps:

- implement bridging of barrel/endcap clusters in ECAL;
- continue the work of researching the application of machine learning to reconstruction in ECAL, including energy/position reconstruction of π^0 if identified accordingly.