Preparation of the trigger system to the next run

BM@N detector council meeting October 3, 2023

No major changes. Three physics triggers: BT, CCT2, MBT

Beam trigger. BC1, VC

No major changes. Will replace scintillator in BC1.

Rotate the scintillators?

If BC0 is made it will be added to the BT logic and read-out.

New fan-in electronic module?

Detector	PMT	Radiator
BC1	Hamamatsu R2490-07	Scint. BC400B 100 x 100 x 0.25 mm ³
VC	Hamamatsu R2490-07	Scint. 113 x 113 x 4 mm³ Ø 25 mm

"Air"-lightguides from Al-mylar

Design and read-out of BC2

Change PMT to Hamamatsu R2490-07, No TDC read-out.

Will fit into existing vacuum station, but new housings will be needed.

Keep old BC2 PMT ready.

Put fresh scintillator.

Additional read-out of LVDS signals from FEE into TDC72VHL. Both, TQDC and TDC provide high resolution timing.

3.6 µs TQDC read-out without Zero-Suppression

Keep as is. Extend time window for HODO.

Efficient detection of small pulses

Extra info outside of Before/After time window (useful for beam composition and beam counter response studies)

Fragment Detector

PMT	Radiator	σ/A (%)
XP2020	Scint. 0.5 mm	6.0
XP2020	Quartz 1 mm	17.0
XP2020/Q	Quartz 1 mm	11.7
R2490-07	Scint. 0.5 mm	9.1 → 6.7 → 5.3

Response of Si Multiplicity Detector

Beam 3 GeV/n, trigger MBT

Detector parameters:

- opening for the beam. Dia. 50 mm
- 8 trapeziodal detectors
- 64 strips in total
- 525 μm thick

Seems fine but not needed

If not installed, can be taken out of the trigger logic

- all 64 channels are working
- clear correlation of hits multiplicity in SiMD and BD

Group of N.Zamjatin

Barrel Detector and trigger CCT1 = BT • (BD \geq n)

Work on new BD (started but not likely be ready for the next run)

Detector:

Two left and right halves as in SiMD.

Shorter strips: $150 \rightarrow 50 \text{ mm}$ (less Pb for shielding)

Increased number of strips: $40 \rightarrow 64$

Optimized Z position (simulation will be needed)

Electronics:

New FEE: higher threshold and fixed 12 ns pulses.

New T0U: added to the main T0U similar to SiMD.

TOU trigger logic scheme

Minimum Bias Trigger (MBT = BT • FD_{veto})

Good linearity with Empty, 1%, 2% targets; N(MBT) / N(BT) for "empty target" ~0.028

Confirm that two close pulses in FD can cause false MBT.

Reproduce with laser system or generator. If confirmed, make modifications in TOU.

Introduce two thresholds in FD: "soft" for MBT; "hard" for CCT2

Material	Thickness, mm	Interaction probability %
Si BeamTracker	0.175	0.30
Ti vacuum window	0.08	0.17
FD, black tape, etc.	0.5	0.94
Air	150	0.21
FD, scint.	~0.1	~0.2
BC2, scint.+Mylar	~0.04	~0.1
		Total ~1.9

Central collisions trigger CCT2 = MBT • (BD \geq n)

The backgrounds in triggers MBT and CCT1 are suppressed when MBT and CCT1 are combined in CCT2

Some non-linearity with 1% and 2% targets remains in CCT2, but becomes much smaller

"Regular" mix of triggers used in data taking

Trigger	Downscaling factor	Fraction, %
BT	2000	3
MBT	35	7
CCT1	230	5
CCT2	1	85

No major changes If second amplitude threshold is added in FD, "hard" threshold will be used in CCT2.

N(CCT2) / N(BT) at $BD \ge 4$

Vadim Volkov. Recent talk on Baldin conference

Multiplicity in ScWall / multiplicity in BD

Check if multiplicity in ScWall can provide additional trigger signal

All changes in the trigger logic should be fixed "two month" before the run

9

Multiplicity correlates with energy deposition in the calorimeter, and anticorrelates with multiplicity in BD.

BC1S Z^2 (ScWall) > 0.4 vertex Z (-1.5 < Z <1.5) Z^2 (FQH) < 100

CCT2

Improvements in trigger setup and control tools can be addressed next time:

- monitoring
- scalers
- multiple CAEN read-out
- read-out of logical trigger signals in CAEN and TQDC
- B/A related issues

Monitoring of BC stability during the run

BC1 and BC2: Amplitude stability in spill

- stable at 2-4 % level
- can be sensitive to (X,Y) beam movement during spill
- next step is to add Beam Tracker into analysis

Time resolution of BC1 and BC2

 $\Delta t_{ij} = t_i - t_j$

 $\sigma_{ii}^{2} = \sigma_{i}^{2} + \sigma_{j}^{2}$

i,j: BC1, BC2, FD1

Measured with additional FD1 counter, placed behind the FHCal hole.

FD1 is similar to BC1 in design, PMTs and scintillator (prepared by V.Velichkov).

Each of BC1 and BC2 have \leq 45 ps resolution. Combined, they can provide \leq 30 ps resolution.

