TSU HEP laboratory Embedded systems

Vladislav Borshch

TSU HEP laboratory facilities

High performance servers for build\&testing
 Intel i7, AMD Ryzen 7xxx

Dev. Boards
Intel Cyclone5, MAX10
Microsemi SF2
Xilinx Artix7, Kintex7, US, Zynq7k/MPSoC
BMTI

Manpower
Senior FPGA engineer
Middle FPGA engineer
2 junior embedded engineers-students

Expertise

FPGA and SoC:
Intel (Altera), Xilinx, Microsemi. VHDL, Verilog/SystemVerilog, UVM, cocotb and etc.

Software:

Qt, MS VS, Python, C/C++ (incl.
embedded), MATLAB, CERN ROOT and etc.

Equipment:
Oscilloscopes, waveform generators and etc.

Interests:
high-performance DSP systems; front-end electronics for HEP; RTL verification.

Spectrometer core

Spectrometer IP core. Vendor-free, FPGA-proven, with test environments. Ready to use.

Input:
SiPM \rightarrow ADC pulses

Processing:
Moving average, decimation, baseline compensation, pile-up detection/removal, zero charge suppression and etc.

Results:
Spectrum histogram 1k..8k channels
Features:
Waveforms dump
32bit pulses counters
Up to 255 channels
Full-featured AXI4 and AXIStream interfaces
*Python/C API

RTL verification

Custom SystemVerilog test environment (VMM based)

Modern technics: Python (cocotb)

Verification with industry-standard UVM

\checkmark VSIM 18>

Project:也| |Now: 3,

FPGA specific DevOps tasks (CI/CD)

Control \& DAQ system

High performance DAQ \& control IP core with C/Python API. Concept

Connection via Ethernet 1/10G AXIStream/AXI4 interfaces UDP/IP support

Summary

System design:

Throughput analysis, design optimization, architecture creating, CI/CD (DevOps) tasks for RTL/FPGA

RTL design for FPGA/ASIC:

SystemVerilog, Verilog, VHDL, HLS

RTL verification:

cocotb, C, UVM

Embedded design:

Buildroot custom builds, Linux drivers, userspace applications
Modeling:
Python, MATLAB, Simulink

Recruiting:

We're member of Digital Design School.
Expect 1-3 embedded/verification junior engineers per year.

