
Изучение свойств строу-трубок и определение требований к считывающей электронике

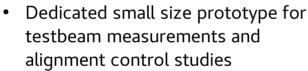
Е.Кузнецова

on behalf of the Straw Tracker Team

- ongoing and starting activities
- Mechanics and geometry (not covered here) ongoing
- Prototyping ongoing
- <u>Lab and testbeam measurements ongoing</u>
 - + establishing approaches for:
 - Prototype quality control initiated
 - Electrical connections initiated
 - Defining parameters of the readout electronics ongoing
- Garfield/LTSpice simulation studies well developed
 - Validation with lab/testbeam measurements with the known electronics
 - Prediction of the readout performance for various readout options
 - Prediction for various operation conditions (field, particle momentum, angle)
- Defining requirements and conceptual design of the readout electronics ongoing
 - Stage2 fast, optional charge measurements
 - Stage1 ~10 times lower max occupancy, good charge measurements
- <u>Realistic simulation of the tracker response in SPDroot initiated</u>
 - Realistic parametrization based on Garfield/LTSpice started
 - Implementing realistic noise, finite TDC/ADC, finite dynamic range scheduled
 - Pattern recognition also with realistic noise needed...

Sep 28, 2023

Combined prototype

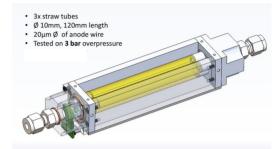

Straw and wire diameters:

20mm / 30um : SHiP type

10mm / 30um : SPD type

5mm / 20um :

NA62 upgrade (Cu/Au coating) DUNE (Al metallisation)


- Good for x-check with existing measurements (NA62, SHiP)
- Tests of x-talks, impedance measurements etc
- Lessons learned

....

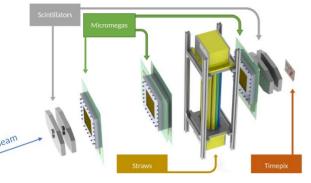
• Calibration/termination connector from opposite side

prototyping

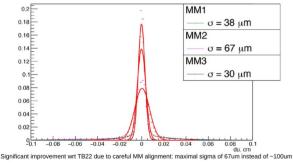
Various single straw or small assembly setups

Laboratory tests with sources:

- Gas gain measurements
- Tests with different custom readout
- Tests with different gas mixtures


Further prototypes

- Single straw max length for lab tests
- Assembly with a stereo-angle? Which angle??


Sep 28, 2023

diamet

setup-23

Reference tracking -- residuals

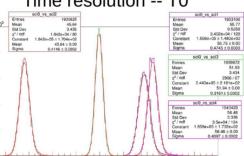
Reference tracking:

- MM detectors (250 um) + Tiger readout (Torino University)
- Timepix4 50um x 50um

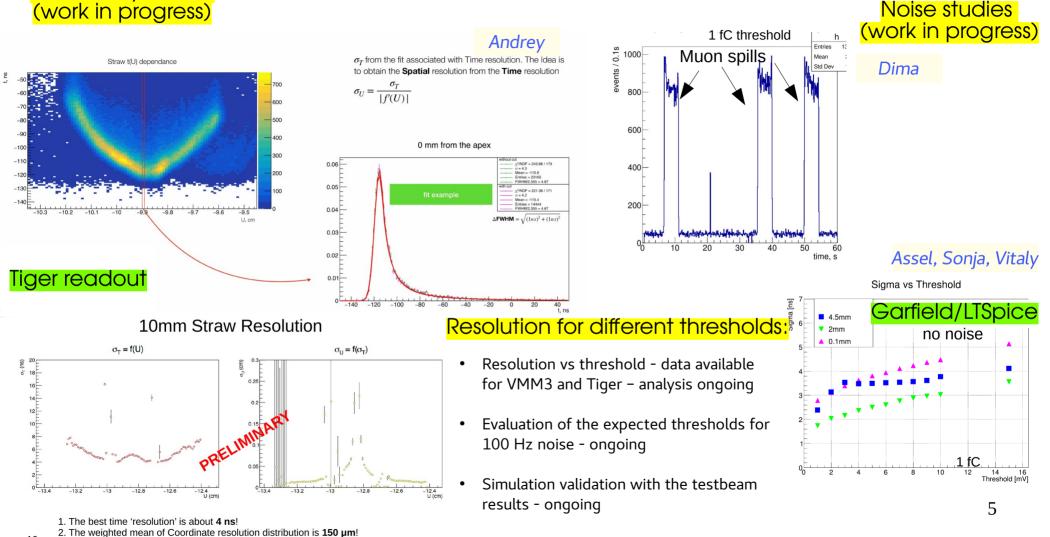
Under the test: a combined straw tracker prototype with the Tiger and mu2e (VMM3) readouts

Good data taking with MM+straw and success in integrating the Timepix4

Time resolution -- TO 103362 250 ×10³ 05 + 1 7040+0 45.64 ± 0.00 200 150 100 50 Significant improvement wrt TB22: four scintillators with adjusted thresholds/delays each with sigma ~ 400/1.4 ps wrt ~1ns in 2022

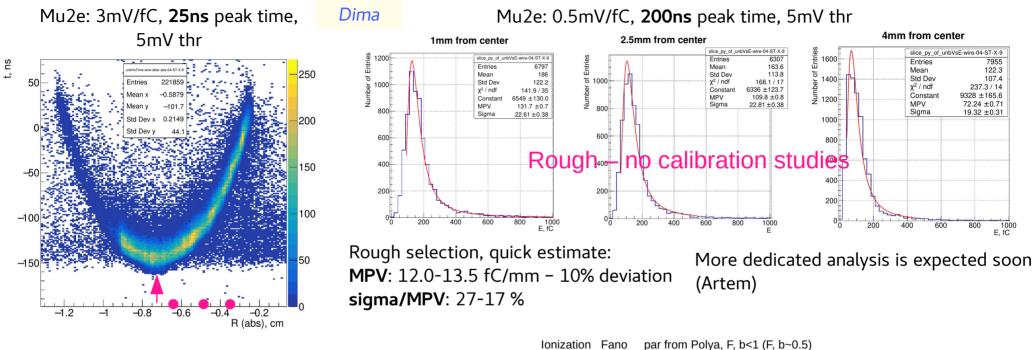

Reference tracking (MM only): better than 70 um work on adding the timepix layer in the analysis is ongoing Reference time (T0): better than ~300 ps

Sep 28, 2023


SPS testbeam measurements

- Precise measurement of the spatial ٠ resolution for different readout parameters (gas and electronics qain, thresholds, pressure,...)
- Validation of the simulation results
- Evaluation of the realistic tracker parameters (noise, cross-talks)
- Evaluation of the charge • measurements performance (MIP) with the available electronics
 - Direct charge measurements (VMM3, equivalent number of bits~8)
 - Time-over-threshold measurements (Tiger)
- Developing a set of measurements for the prototype quality control

SPS testbeam measurements



16

Preliminary results

SPS testbeam measurements

Preliminary results (work in progress)

 $\frac{\sigma_Q}{Q} = \chi$

Rough x-check: Ar at 18 degC and 1 bara: rho ~ 1.7 e-3 g/cm3 MIP SP[MeVcm2/g] = dE/dx/rho ~ O(1) MeV/1.7e-3/cm ~ keV/cm Charge uncertainty (w/o electronics): $(\sigma_0)^2 - (\sigma_{max})^2 = 1 - (\sigma_{max})^2$

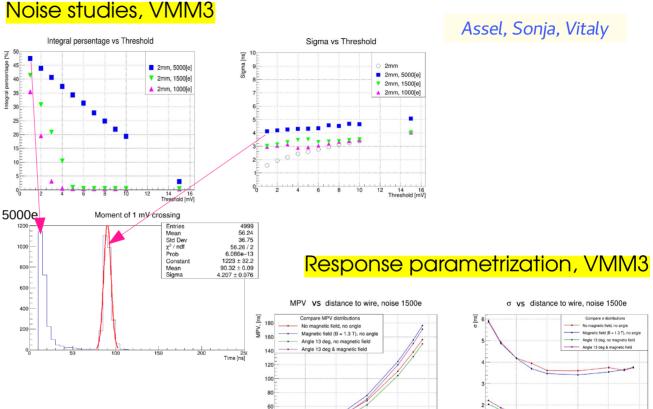
$$\left(\frac{\sigma_{Q}}{Q}\right)^{2} = \left(\frac{\sigma_{n_{0}}}{n_{0}}\right)^{2} + \frac{1}{n_{0}} \left(\frac{\sigma_{A_{typical}}}{A_{typical}}\right)^{2}$$
Prim charge Gain fluct (Polya)

b) E - energy loss

Largest rel error: sqrt(2*26 eV/1keV) = sqrt (5)*0.1 = 0.22 If b=0.5, F(Ar)=0.2 => 0.13

BUT: no electronics, no non-uniformities BUT: the larger energy loss, the less fluctuations

Sep 28, 2023


6

- Garfield some fixes is needed • (qain)
 - communication with the developers
 - X-checks with lab measurements
- LTSpice ٠
 - Models of VMM3, Tiger
 - Validation with TB data •
- Accounting for noise ٠
- Next steps: •

=> input to SPDroot (together with digitization, dynamic range etc)

=> ready for modelling custom readout (further development)

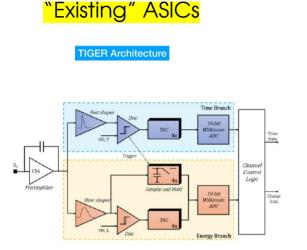
Assel, Sonja, Vitaly

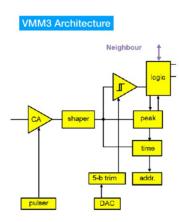
Compare or distribution

netic field (B = 1.3 T), no

ale 13 dea no magnetis fiel ale 13 deg & magnetic

distance. [mm]

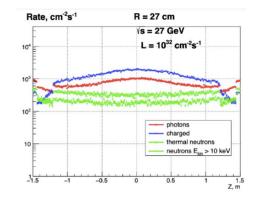

b)


Рис. 13: (a) Зависимость MPV (ns) и (b) σ (ns) временных распределений от расстояния между треком и анодой проволокой.

distance. (mm

a)

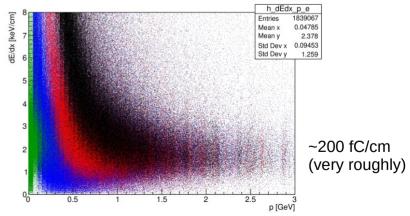
Sep 28, 2023



	VMM3	TIGER
Number of channels	64	64
Clock frequency	1080 MHz	160200 MHz
Input capacitance	<300 pF	<100 pF
Dynamic range	Linearity within $\pm 2\%$ up to 2 pC	50 fC
Gain	0.5, 1, 3, 6, 9, 12, 16 mV/fC	12 mV/fC
ENC (energy branch)	<3000	<1500
TDC binning	~1 ns	50 ps
Maximum event rate	140 kHz/ch	60 kHz/ch
Consumption	15 mW/ch	12 mW/ch

Readout electronics concept

Our requirements



Andrey Gridin

Minor update still expected Stage2 : > 200kHz Stage1 : factor ~0.1

dE/dx vs p

Ruslan Akhunzyanov

Sep 28, 2023

Readout electronics concept

Alexandr Solin

Other (non-SPD) developments

Dune:

- triggerless
- identical requirements for time resolution
- similar requirements to charge measurements
- significantly lower bandwidth (<kHz)

Torino (post-Tiger):

- triggerless
- charge measurements adopted for MWPC/straws
- worse time resolution

Other options:

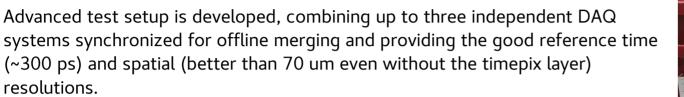
- Time-Over-Threshold for charge measurements?

Though no direct match, the experience of the ongoing R&Ds is useful

Параметры	быстрого, временного кан	ала
Время формирования быстрого	6÷10	
канала, нс		
Разрешение временного канала,	1	
нс		
Регулировка порога	0.5÷15	
дискриминатора, фК		
ENC (r.m.s.), e	<1000	
Cd=60 пФ		
Временное окно ТАС, нс	500÷5000	
	дленного, амплитудного к	анала
Коэффициент преобразования	straw	micromegas
медленного канала, мВ/фК	1/3	3/6/9
Время формирования медленного	straw	micromegas
канала, нс	75/150	75/150/250
Ширина сигнала по основанию,	300/600	300/600/1000
HC		
Порядок формирователя	4	
Разрядность АЦП, бит	10	
ENC (r.m.s.), e	<1000	
Cd=60 пФ		

Параметры детектора		
Диапазон входных зарядов, фК	+/-(0÷1000)	
Емкость straw детектора, пФ	20÷100	
Загрузка на канал, кГц	150	
Режим работы	Бестриггерный	

Model exists


Possible solution:

- can be used in Garfield/LTSpice Expected to be designed by April next year Complimentary studies are ongoing:

- lab and testbeam measurements
- Garfield/LTSpice simulation
- development of the readout concept

Summary

A significant part of the measurements is done during the scheduled SPS test beam periods (3x2 week of intense muon beam) – including the possibility to use dedicated electronics (VMM3, Tiger, Timepix4). Extra-time at the beam dump gives possibility for debugging + slow remote data taking

Measurements dedicated to PID (E(h)<GeV) are considered to be done next year with the PS beam. Possibility to use synchrocyclotron beam at PNPI is also considered.

Lack of experienced manpower!

But a lot of experience is being gained by young colleagues involved in R&D

Understanding the influence of the measured expected straw+readout performance on the track/charge reconstruction requires support with simulation studies

