DIRC study

Artem Ivanov

Physics & MC meeting 26.09.2023

DIRC - Detection of Internally Reflected Cherenkov Light

Separate kaons and pions with at least 3 standard deviations for momenta up to 3.5 GeV/c

The PANDA Barrel DIRC Detector at FAIR

SPD geometry

DIRC in SpdRoot: geometry

DIRC in SpdRoot: material

Number of module: 32

Module size = 77 (T) x 15 (W) x 3400 (L) mm

Material: SiO₂ fused Silica ("Quartz")

Atomic and nuclear properties of materials: Silicon dioxide (fused quartz) (SiO₂)

Quantity	Value	Units	Value	Units
<z a=""></z>	0.49930			
Density	2.20	g cm ⁻³		
Minimum ionization	1.699	MeV g ⁻¹ cm ²	3.737	MeV cm ⁻¹
Nuclear collision length	65.2	g cm ⁻²	29.64	cm
Nuclear interaction length	97.8	g cm ⁻²	44.47	cm
Pion collision length	91.9	g cm ⁻²	41.77	cm
Pion interaction length	128.8	g cm ⁻²	58.56	cm
Radiation length	27.05	g cm ⁻²	12.29	cm

// fused material

TGeoElement *elSi = new TGeoElement("Silicon", "Si", 14., 28.09); TGeoElement *el0 = new TGeoElement("Oxygen", "0", 8., 16.00);

Double_t density = 2.200; // fused quartz
TGeoMixture *fusedsilica = new TGeoMixture("Quartz", 2, density);
fusedsilica->AddElement(elSi, 1);
fusedsilica->AddElement(el0, 2);

TGeoMedium *medfusedsilica = new TGeoMedium("medfusedsilica", 0, fusedsilica);

DIRC in SpdRoot: length

In Barrel

Study

 $\label{eq:spdEcalRCParticle*} SpdEcalRCParticle*) EcalParticlesRC_\rightarrow EcalParticlesRC_\rightarrow At(ip); \\ Ereco = part->GetEnergy(); \\ \end{cases}$

Generated two samples: 1) with DIRC 2) without DIRC

TOTAL NUMBER OF RAD.L. L = 110 cm, 85 degreeWith DIRC = 0.28 Without DIRC = 0.16

 $\Theta \in [40 - 160]$ degree $E \in [0.1; 3.0, step = 0.01 GeV]$ (E_{true} - E_{reco})/E_{true}

In Barrel

Mean and Sigma <u>gamma</u>

without

mean

0.1

without with 2.5 0.5 1.5 2 3 1 E_{true}

electron

mean

0.4

0.3

0.2

0.1

0

In Barrel

Xlast vertex VS Ylast vertex

Without DIRC With DIRC x150 x150 10^{2} $\sum_{last v}$ 10^{2} X_{Last} 50 10 10 <u>gamma</u> -50-100-150-15050 100 150 50 100 150 -150-100-50-150-50-100n n xertex 150 xertex 150 10² 10^{2} $X_{last v}$ $X_{last \, v}$ 50 50 10 10 electron -50 -50-100-100-150-15050 100 150 100 150 -15050 -150-100-50-100-500 0 $Y_{last \ vertex}$ Y_{last vertex} LO

Efficiency

<u>gamma</u>

96% → **86%**

<u>gamma</u>

<u>electron</u>

R_{last vertex} in [89 - 92]

Conclusion

• Study for DIRC detector was done

(E_{true} – E_{reco})/E_{true}, gamma

Without DIRC

With DIRC

(E_{true} - E_{reco})/E_{true}, electron

Without DIRC

