Транспортировка и формирование пучков для физических экспериментов в корп. 205

П. Рукояткин для УО ЛФВЭ

22 Декабря 2023г.







# Каналы транспортировки на выведенных пучках Нуклотрона

| Канал    | Рабочая зона                                     | p <sub>max</sub> (t <sub>max</sub> ),<br>GeV/c (GeV/n) | <b>I<sub>max</sub>,</b><br>d/цикл | Пучки                         |
|----------|--------------------------------------------------|--------------------------------------------------------|-----------------------------------|-------------------------------|
| МВ ("н") | F <sub>3</sub>                                   | ≅ 13.7 (6)                                             |                                   | Первичные                     |
| VP-1     | F <sub>4</sub> , F <sub>5</sub> , F <sub>6</sub> | ≅ 13.7* (6)                                            | 10 <sup>11</sup>                  | Первичные, вторичные          |
| VP-1     | BEQUEREL, $F_5$                                  | ≅ 4 (1.2)                                              | 10 <sup>6</sup>                   | Ядерные фрагменты (z/A > 0.4) |
| 1v       | ALPOM2, $\Delta$ – $\Sigma$ , PPT                | 7.5 (3)                                                | 10 <sup>7</sup>                   | Первичные, n, вторич. p,      |
| 3v       | FAZA                                             | 9 (3.66)                                               | 10 <sup>9</sup>                   | Первичные                     |
| 4v       | NIS-GIBS                                         | 9 (3.66)                                               | 10 <sup>6</sup>                   | Первичные, вторичные          |
| 4v       | MPD testing                                      | 4-9                                                    | 10 <sup>6</sup>                   | Первичные, вторичные          |
| 6v       | BM@N                                             | ≅ 13* (5.7)                                            | 10 <sup>9</sup>                   | Первичные                     |

#### Схема оптики основного направления транспортировки выведенного пучка





### Канал вывода пучка из Нуклотрона



#### Описание выведенного пучка

Б.В. Василишин И.Б. Иссинский, В.А. Михайлов, М.Н. Таровик, ОИЯИ 9-86-511

Расч., эмитт. выв. пучка, мм\*мр:

**Ех = 9.5***π*, **Еу = 20***π* (t=0.2 ГэВ/н)

 $ε_x = 2.5π$ ,  $ε_y = 2π$  (t = 6 ГэВ/н)





М. Янек, В.П.Ладыгин, Т. Уесака, ОИЯИ Р1-2007-171

#### Измеренные значения эмитт.



## Расчетный вариант огибающей пучка



## Выведенный пучок

| Parameter                      | @                | Units     | Value         | Beam profiles at the $F_5$ focus.<br>Deuterons, $p_{beam} = 4.3$ GeV/c, $\sigma_x = 2.6$ mm, $\sigma_y = 3.0$ mm |
|--------------------------------|------------------|-----------|---------------|------------------------------------------------------------------------------------------------------------------|
| Momentum range                 | Z/A = ½          | Gev/c/amu | 0.6 - 6.8     |                                                                                                                  |
| Momentum spread, $\sigma$      |                  | %         | 0.04 - 0.08   |                                                                                                                  |
| Extraction time                |                  | sec       | 10            |                                                                                                                  |
| Beam emittance                 | P <sub>max</sub> | mm∙mr     | 2π            |                                                                                                                  |
| Beam size in a waist, $\sigma$ | P <sub>max</sub> | mm        | <u>&lt;</u> 1 |                                                                                                                  |
| Extraction efficiency          |                  | %         | > 90          | -32 $-16$ $x, mm$ $16$ $32$ $-32$ $-16$ $y, mm$ $16$ $32$                                                        |



t, ms

#### Транспортировка выведенного пучка в корп. 205



11

# Расчетный вариант огибающей пучка

Канал транспортировки ВП-1



# Элементная база каналов

# Квадрупольные линзы 20К100 и 20К200



|      | G,<br>Тл/м | I, A | U, B | L <sub>эф.,</sub> м | 2а, см | w    | Кол-во |
|------|------------|------|------|---------------------|--------|------|--------|
| K100 | 13         | 3500 | 75   | 1.1                 | 20     | 4*16 | 4 + 6  |
| K200 |            | 5500 | 130  | 2.1                 |        |      | 14 + 4 |

#### Дипольные поворотные магниты

|         | В, Тл   | I, A | d, см  | L*b, см <sup>2</sup> | Прим.             |
|---------|---------|------|--------|----------------------|-------------------|
| 4СП-12А | 1.9     | 1700 | 20     | 300*50               | МВ → ВП-1         |
| 5СП-12А | 2.1     | 1700 | 15     | 300*50               | ВП-1              |
| СП-12А  | 1.65    | 1700 | 25     | 300*50               | 1в, 3в, 4в (5шт.) |
| 3СП-12  | 2.15    | 1100 | 10     | 300*50               | ВП-1 → 6в         |
| СП-94   | 1.1     | 630  | 20     | 130*30               | ВП-1              |
| СП-94   | 1.5-1.7 | 630  | 13 - 9 | 130*30               | 1в, 3в, 4в (3шт.) |
| 2СП-40  |         | 1100 |        | 150*100              | ВП-1 → 3в, 4в     |



Вакуумный объем: полюсные накладки (1) нерж. боковины (2) (Е.А.Матюшнвский, 2000')

Аналогичный подход реализован в магнитах 3СП-12 и 2СП-40 (С.Ю.Анисимов, А.С.Кубанкин)

## Магнит ВКМ



| d                        | 14 см    |
|--------------------------|----------|
| $L_{eff.}$               | ≅ 165 см |
| B(I <sup>*</sup> =1000 A | 0.35 Тл  |
| B(I =1750 A)             | 0.60 Тл  |
| Фмв                      | ≅ 14 мр  |
|                          |          |

\* - I<sub>DC</sub><sup>MAX</sup> ?



# Эксперимент <u>BARIONIC</u> <u>MATTER</u> <u>@</u> <u>N</u>UCLOTRON



## Требования к пучку

| • Набор частиц: | тяжелые ядра ( <sup>19</sup> | <sup>97</sup> Au), протоны, | дейтроны, | легкие ядра |
|-----------------|------------------------------|-----------------------------|-----------|-------------|
|-----------------|------------------------------|-----------------------------|-----------|-------------|

• Интенсивность: **10<sup>5</sup> – 10**<sup>7</sup> ядер/цикл для <sup>197</sup>Au **10<sup>7</sup> – 5**·**10**<sup>9</sup> част./цикл для протонов и дейтронов

| • Энергия, ГэВ/н          | t <sub>min</sub>  | t <sub>max</sub>                        |
|---------------------------|-------------------|-----------------------------------------|
| <sup>197</sup> Au:        | 3.0 (В = 1.44 Тл) | 4.65 (В = 2.08 Тл)<br>4.4 (В = 2.00 Тл) |
| ядра с <b>Z/A = 1/2</b> : | 3.0 (В = 1.16 Тл) | 6.00 (В = 2.08 Тл)<br>5.7 (В = 2.00 Тл) |

- Размеры пучка:  $\Delta x \cdot \Delta y = 5 \cdot 5 \text{ мм}^2$  (FWHM)
- Beam duty factor:  $\geq 50\%$
- Пространственная стабильность пучка: ± 1 мм

• Неравномерность растяжки (колебания мгновенной интенсивности): ≤ 20%

#### Схема канала транспортировки выведенного пучка к ВМ@N



Рассчитанный вариант транспортировки выведенного пучка от F<sub>3</sub> к BM@N\*. Огибающие пучка.



Beam envelopes, cm

## Канал 6в



### Конечный участок канала транспортировки пучка к BM@N



#### Транспортировка выведенного пучка на BM@N

Профили пучка углерода при t = 3.5 ГэВ/н. Сеанс №51, 14/03/15, 21:55



Сюжеты вне презентации:

- Поляризованные/неполяризованные нейтроны нейтронный канал
- Пучки вторичных поляризованных протонов

Пучки легких нестабильных ядер для исследований методом ядерных фотоэмульсий

Czech. J. Phys., Vol.51, A345 Czech. J. Phys., Vol.52, C695 EPJ ST **162**, 267-274 (2008)

# Диагностика пучка

### <u>Проволочная Ионизационная Камера</u>

(MWPC – multiwire proportional chamber, ПК – пропорциональная камера)



#### ПИК



#### Блок из двух плоскостей.

- 30Х + 30Ү каналов
- газовый объем: Ar + CO<sub>2</sub> (3:1)
- в/в питание. 0 5кВ
- шаг регистрации 2, 4, 6 мм.

#### Система профилометров ПИК на каналах в корп. 205



### Размещение профилометров





# 4 segments of vacuum beam pipe on experimental hall of BM@N \*



- 1. Сегмент ионопровода из нержавеющей стали.
- 2. Ионопровод из нержавеющей стали + 4 сегмента из алюминия
- з. Ионопровод из углепластика
- 4. Ионопровод из алюминия
- \* courtesy S. Piyadin



BM@N

Экраны DAQ системы профилометров в корп. 205



#### Ионизационная камера с проволочными электродами





тонкие окна

