Отчет группы ИЯИ РАН о работах в рамках Программы целевого финансирования научно-исследовательских работ по теме BM@N

Николай Карпушкин

Задачи группы ИЯИ РАН в рамках Программы целевого финансирования научно-исследовательских работ по теме BM@N

Моделирование и обработка экспериментальных данных с передних детекторов фрагментов- спектаторов, полученных в сеансе Xe+CsI при энергиях пучка ионов ксенона 3.0 и 3.8 АГэВ. (Губер)

- Калибровка переднего адронного калориметра FHCal (Карпушкин)
- Калибровка пучкового годоскопа FQH (Зубанков)
- Калибровка сцинтилляционной стенки ScWall (Шабанов)
- Изучение корреляций откликов передних детекторов (Морозов)
- Классификация событий по классам центральности для реакции Xe+CsI при энергиях пучка ионов ксенона 3.0 и 3.8 АГэВ (Морозов, Карпушкин, Зубанков, Шабанов)

Передние детекторы:

- ScWall (Scintillation Wall)
- FQH (Forward Quarz Hodoscope)
- FHCal (Forward Hadron Calorimeter)

Задачи:

- Измерение зарядовых распределений спектаторных фрагментов
- Оценка центральности
- Оценка ориентации плоскости реакции

Передний адронный калориметр FHCal (Forward Hadron Calorimeter)

20 модулей с 10 продольными секциями (PSD CBM), поперечный размер $20 \text{x} 20 \text{cm}^2$, длина – $5.6 \, \lambda_{\text{int}}$.

34 модуля с 7 продольными секциями (FHCal MPD), поперечный размер $-15x15cm^2$, длина $-4.0 \lambda_{int}$.

Hamamatsu MPPC S12572-010P, 3 x 3 мм².

434 канала считывания.

35	36	1	2	3	4	5	45	46
		6	7	8	9	10		
37	38						47	48
		11	12	13	14	15		
39	40	16	17		10	10	49	50
		16	17		18	19		
41	42	20	21	22	23	24	51	52
		20	21	22	20	27		
		25	26	27	28	29		
43	44			21		20	53	54
		30	31	32	33	34		
			• •	~_	• •	• •		

Калибровка секций FHCal на космических мюонах

Morozov, S., et al. JINST 15, C05050. doi:10.1088/1748-0221/15/05/C05050 (2020). Izvestnyy, A., et al. J. Phys. Conf. Ser. 1690 012060. doi:10.1088/1742-6596/1690/1/012060 (2020).

Видимая энергия в калориметре FHCal

Более 1 трека в реконструкции вершины Один ион Xe по BC1S Положение вершины (-1.5 < Z < 1.5)

Run 8421 MIXED trigger, XeCsl@3AGeV 949646 ev

Run 8142 MIXED trigger, XeCsl@3.8AGeV 679560 ev

Энергетические профили калориметра FHCal в сравнении с моделированием

Более 1 трека в реконструкции вершины Один ион Xe по BC1S Положение вершины (-1.5 < Z < 1.5)

Передний кварцевый годоскоп FQH (Forward Quarz Hodoscope)

Измерение зарядов ядерных фрагментов в отверстии FHCal — наиболее передней области быстрот — для определения центральности

- 16 стрипов 160*10*4 мм³ с майларовым отражателем
- Покрывает пучковое отверстие 15*15 мм²
- Считывание света с обоих торцов каждого стрипа
- 2 МРРС, подключенные параллельно, на каждом торце
- каждая пара МРРС читается с усилениями х1 и х4

Зарядовые распределения в FQH

Один ион Xe по BC1S

Профиль пучка. ВТ

Зарядовые распределения в FQH: Оценка доли minimum bias

ССТ2 триггер отбирает до ~70% наиболее центральных событий (по отношению к моделированию minimum bias)

Impact parameter

Восстановление пайлапа в FQH: WIP

- В данных в ~40% событий BC1S показывает более одного иона ксенона.
- Пайлапы видны в FQH. В текущем алгоритме берется максимум в фиксированном окне.
- В \sim 35% случаев из события с пайлапом выбирается неверный пик.
- Это не сказывается на суммарных распределениях, но провоцирует возможную ошибку неправильного определения центральности пособытийно. Доля таких событий 40%*35% = 15% всей статистики.

Возможный путь решения:

1. Разработка метода обработки осциллограмм с минимизацией длительности сигнала 2. Результат обработки — не одно число, а массив значений положений и амплитуд пиков

Сцинтилляцонная стенка ScWall (Scintillation Wall)

Внутреннее устройство ScWall (в процессе сборки)

- 36 малых внутренних сцинт. ячеек 7.5×7.5×1 cm³ + 138 больших внешних сцинт. ячеек 15×15×1 cm³
- Пучковое отверстие = 4 малым ячейкам
- Светозащита алюминиевой пластиной
- Захват и передача света по WLS
- Считывание света по SiPM на индивидуальной PCB каждой ячейки

Измерение зарядовых распределений спектаторов → настройка параметров фрагментационных моделей

+ оценка центральности и ориентации плоскости реакции

light collection from tiles

Зарядовые распределения в ячейках ScWall

XeCsI@3.8 AΓ₃B

Более 1 трека в реконструкции вершины Один ион Xе по BC1S Положение вершины (-1.5 < Z < 1.5)

Малые

ячейки

Малые

ячейки

Зарядовые распределения в сцинтилляционной стенке. Пики соответствуют зарядам $Z=1,\,2$

Зарядовые распределения в ячейках ScWall

 $XeCsI\ CCT2\ триггер$ Более 1 трека в реконструкции вершины Один ион $Xe\ no\ BC1S$ Положение вершины (-1.5 < Z < 1.5)

Корреляции откликов передних детекторов

XeCsI@3.8A GeV. Run 8142 2% CsI target, CCT2 trigger selection.

DCM-QGSM-SMM minbias

XeCsI@3.0A GeV. Run 8421 2% CsI target, CCT2 trigger selection.

No simulation available yet

Более 1 трека в реконструкции вершины Один ион Xе по BC1S Положение вершины (-1.5 < Z < 1.5)

Классификация событий по классам центральности

 $XeCsI@3.8A\Gamma \ni B. \ CCT2 \ триггер$ Более 1 трека в реконструкции вершины Один ион Xe по BC1S Положение вершины (-1.5 < Z < 1.5)

DCM-QGSM-SMM minbias
Аналогичный подход
классификации центральности
Impact parameter resolution

Заключение

- Выполнены калибровки детекторов FHCal, FQH и ScWall
- Проведен предварительный анализ полученных с этих детекторов данных
- Отклики детекторов находятся в согласии с модельными данными и коррелируют друг с другом
- Полученные корреляции можно использовать для определения центральности

Спасибо за внимание!

BACKUP

FHCal (Forward Hadron Calorimeter)

(for centrality and reaction plane reconstruction)

- 34 inner modules 42 Pb/scint samples (16mm Pb + 4mm Scint)
- 20 outer modules 60 Pb/scint samples (16mm Pb + 4mm Scint)
- Length of small module $\sim 4 \ \lambda_{int}$ Length of large module $\sim 5.6 \ \lambda_{int}$
- Light collection 6 WLS fibers from each 6 conseq. scint tiles (one section) combined to one optical connector at the end of module
- Light readout:7 MPPCs per small module10 MPPCs per large module
- Weight of small module 200kg
 Weight of large module 500kg

Hamamatsu MPPC S12572-010P 3*3mi

Number of pixels: 90000

Gain: 1.35*10⁵ PDE: 12%

CBM PSD module production

one section

Hamamatsu S14160-3010PS 3*3mm²

Number of pixels: 90000

Gain: 1.8*10⁵ PDE: 18%

FQH (Forward Quarz Hodoscope) (for centrality and fragments charge measurements)

160 MM

Кварцевая пластина

- ●16 strips 160*10*4 mm³ with mylar reflector
- ●cover beamhole 15*15cm²
- •light readout from both edges of each strip
- •2 MPPCs connected in parallel on each side
- each MPPC pair is read with gains x1 and x4

Hamamatsu MPPC S14160-3015PS 3*3mm²

Number of pixels: 39984

Gain: 3.6*10⁵ PDE: 32%

Scintillation Wall (ScWall) для измерения зарядов ядерных фрагментов и оценки плоскости реакции

270*120 cm²

SiPM connector PCB on a tile

- 36 small inner cells $7.5 \times 7.5 \times 1 \text{ cm}^3 + 138 \text{ big outer cells } 15 \times 15 \times 1 \text{ cm}^3$
- light yield for MIP signal small cells 55 p.e.±2.4%; big cells 32 p.e. ± 6%.
- optional beam hole (covered with 4 small cells for the SRC run)
- covered with a light-shielding aluminum plate
- light collection by WLS fibers
- light readout with SiPM mounted

light collection from tiles

- Hamamatsu MPPC S13360-1325CS 1.3*1.3mm²
- Number of pixels: 26
- Gain: 7*10⁵
- PDE: 25%

