Anomalies in Particle Physics arXiv:2309.03870 Andreas Crivellin and Bruce Mellado

Alfiia Mukhaeva (BLTP, JINR)

Outline

- Introduction
- Status of the anomalies
- -a_μ
- Cabibbo Angle Anomaly
- −b→cτν
- −b→sµµ

....

- -Non-resonant di-leptons
- \neg W mass and Z \rightarrow bb
- Explanations of the Flavour anomalies
- Conclusions
- •Future implications

Introduction

Physics Beyond the Standard Model • Dark Matter existence established at cosmological scales

- -New weakly interacting particles
- Neutrinos not exactly massless
- Right-handed (sterile) neutrinos
- Matter anti-matter asymmetry
- Additional CP violating interactions

The Standard Model must be extended! What is the underlying fundamental theory?

The search for BSM physics

- Cosmic Frontier
- Cosmic rays and neutrinos
- Dark Matter
- Dark Energy
- Energy Frontier
- -LHC
- Future colliders
- Intensity Frontier
- Flavour
- Neutrino-less double-β decay
- Test of fundamental symmetries
- Proton decay

Perfrom high-statistics measurements to search for the quantum effects of new particles

Anomalies

Anomalous magnetic moment of the muon

• Theory prediction challenging (hadronic effects)

$$\Delta a_{\mu} = (251 \pm 49) \times 10^{-11}$$

- Need NP of the order of the SM EW contribution
- Chiral enhancement necessary for heavy NP
- New results from Fermilab [2308.06230]: 116 592 057(25) × 10^-11 (0.21 ppm)
- New world average : 116592059(22)×10^-11_(0.19 ppm)

5.0 deviation from the SM prediction

Cabibbo Angle Anomaly (CAA)

- Deficit in first row and first column CKM unitarity. [PDG] $|V_{ud}^2| + |V_{us}^2| + |V_{ub}^2| = 0.9985 \pm 0.0005$ $|V_{ud}^2| + |V_{cd}^2| + |V_{td}^2| = 0.9970 \pm 0.0018$
- NP in the determination of V_{ud} from beta decays needed
- Can be interpreted as
 - NP in beta decays
 - NP in the Fermi constant
 - LFUV (modified $W\mu\nu$ coupling)

 3σ tension, can be interpreted as LFUV

Flavour changing neutral current semi-leptonic B decays

 $b \rightarrow s\mu^+\mu^-$ Processes

- Flavour Changing Neutral Current (FCNC)
- In the SM suppressed by

> The CKM elements $V_{cb} \approx 0.04$

> Electroweak scale

Loop-factor

• Wilson coefficients precisely known [Bobeth et al. PRD, 2013]

Rare processes; very sensitive to NP

• $B_s \rightarrow \mu\mu$ theoretically clean but chirality suppressed and therefore statistically limited

 $B_s \rightarrow \mu\mu$ and $B_s \rightarrow \phi\mu\mu$

• $B_s \rightarrow \phi \mu \mu$ has a higher Br, but knowledge of the form-factor needed

Br's $\approx 20\%$ below SM expectations

- P_5 angular observables in $B \rightarrow K^* \mu \mu$
- Constructed in such a way that the form factor dependence is minimized
- Confirmed by latest LHCb analysis for the charged mode

The P₅' Anomaly

>3 σ deviation from the SM prediction

12

$R(K^*) = B \rightarrow K^* \mu^+ \mu^- / B \rightarrow K^* e^+ e^ R(K) = B \rightarrow K \mu^+ \mu^- / B \rightarrow K e^+ e^-$

Theoretically absolutely clean observable (in the SM)

Lepton Flavour Violation were not confirmed [2212.09152]

Global Fit to b->sµ+µ-Data

- Perform global model ³ independent fit to include ² all observables (≈150)
- Several NP hypothesis
 are significantly
 preferred over the SM
 hypothesis
- Study via effective interactions

Fit is $>5 \sigma$ better than the SM

Charged current tauonic B decays

- $B \rightarrow D\tau\nu$, $B \rightarrow D^*\tau\nu$
- Tree-level decays in the SM
- Form factors needed
- With light leptons (μ , e) used to determine the CKM elements
- CKM fit works very well, i.e. tree-level in agreement with $\Delta F=2$ processes

Largest B branching ratios, used to determine the CKM elements, usually assumed to be free of NP

b→cτv Measurements

All measurements above the SM prediction O(20%) constructive effect at >3σ

• $R(J/\Psi) = B_c \rightarrow J/\Psi \tau \nu / B_c \rightarrow J/\Psi l \nu$

Supports R(D) & R(D*) preferred

$\Delta A_{FB} \text{ in } B \longrightarrow D^* lv$

- 4σ deviation found by 2104.02094 based on BELLE data 1809.03290
- Scalar and/or tensor operators required for an angular asymmetry
- g-2 and b \rightarrow sµµ motivate new physics related to muons

• 3.7σ tension in the W mass using a conservative error combination

• 2σ tension in Z->bb from LEP

W mass and $Z \rightarrow bb$

2204.04204

Related to LFUV?

Non-resonant di-electrons ($qq^- \rightarrow e+e-$)

- CMS and ATLAS observe more electrons than expected in the SM [2103.02708] • model-independent fit: NP scale of 10 TeV with order one couplings can improve over
- the SM hypothesis by $\approx 3\sigma$ [2103.12003]

Lepton flavour universality violation in tau decays $\tau \rightarrow \mu v v^{-1}$

• Combining the ratios of branching ratios $Br(\tau \rightarrow \mu(e)\nu\nu)/Br(\mu \rightarrow e\nu\nu)$ and $Br(\tau \rightarrow \mu(e)\nu\nu)/Br(\mu \rightarrow e\nu\nu)$ $\mu v v^{-}$ /Br($\tau \rightarrow e v v^{-}$) [2206.07501], leads to an $\approx 2\sigma$ preference for constructive new physics (NP) at the per-mille level in $\tau \rightarrow \mu \nu \nu^{-1}$ [2111.05338]

 Z, γ

LHC Multi-Lepton Anomalies ($e\mu(+b)$)

Final state	Characteristics	SM backgrounds	Significance
$\ell^+\ell^- + (b-jets)^{62,65,66}$	$m_{\ell\ell} < 100 \text{GeV}, (1b, 2b)$	$t\bar{t},Wt$	$> 5\sigma$
$\ell^+\ell^-$ +(no jet) ^{61,67}	$m_{\ell\ell} < 100{ m GeV}$	W^+W^-	$\approx 3\sigma$
$\ell^{\pm}\ell^{\pm}, 3\ell + (b\text{-jets})^{64, 68, 69}$	Moderate H_T	$t\bar{t}W^{\pm},t\bar{t}t\bar{t}$	$> 3\sigma$
$\ell^{\pm}\ell^{\pm}, 3\ell, (\text{no } b\text{-jet})^{63, 70, 71}$	In association with h	$W^{\pm}h(125), WWW$	$\gtrsim 4\sigma$
$Z(\rightarrow \ell \ell)\ell$, (no <i>b</i> -jet) ^{62,72}	$p_{\rm T}^Z < 100 {\rm GeV}$	ZW^{\pm}	$> 3\sigma$

Higgs-like signals

- 95 GeV: di-taus, $ZH(H \rightarrow bb^{-})$, WW: 3.8 σ
- 152 GeV [2104.13240]: $\gamma\gamma$ + missing energy, WW+missing energy: 4.9 σ
- 680 GeV [2102.13405]

(di-)di-jet resonances (jj(-jj))

- CMS [2206.09997] finds hints for the (non-resonant) pair production of di-jet resonances with a mass of ≈ 950 GeV with a local (global) significance of 3.6 σ (2.5 σ) (pp \rightarrow Y(*) \rightarrow XX \rightarrow (jj)(jj))
- [2208.12254] global 3.2σ significance at mY ≈ 3.6 TeV
- ATLAS [2307.14944] finds a di-di-jet excesses at \approx 3.3 TeV with a di-jet mass of 850 GeV

Hints for NP

- LFV:
 - ▶ CAA
 - ▶ (g-2)
 - b→sµ+µ-
 - ▶ b→cτν
 - ▶ qq→ee

- EW observables:
 - ▶ W mass
 - ▶ Z→bb

- Direct searches:
 - ▶ γγ
 - Ν ττ
 - ▶ 4b
 - ▶ bbττ

New Physics Explanations of the Anomalies

- Leptoquarks (LQs)
- Diquarks (DQs)
- Z' bosons
- W' bosons
- Vector-like Quarks (VLQs)
- Vector-like Leptons (VLLs)
- New scalars (S)

The SM extensions

• MSSM [<u>0102145</u>], [<u>0102146</u>]

tan(ß) enhanced slepton loops

- Scalars
 - Light scalar with enhanced muon couplings
- Z'
 - Very light with $\tau\mu$ couplings (m_{τ} enhancement) [0104141]
 - Heavy (TeV scale): chiral enhancement factor [2104.03691]
- New scalars and fermions [<u>1807.11484</u>] $\triangleright \kappa/Y_{II}$
- Leptoquarks [1511.01900]

 $\gg m_t/m_u$ enhanced effects in $h \rightarrow \mu\mu$ $\gg m_t^2/m_z^2$ enhanced effects in $Z \rightarrow \mu\mu$

a_u explanations

Cabibbo Angle Anomaly [2102.02825]

e

 ν_e

e

 u_e

 u_e

26

- LQs [<u>2104.06417</u>]
- W' [<u>2005.13542</u>]
- W' [2005.13542]
- Z' [2104.07680]
- Singly charged scalar [2012.09845]
- Vector-like leptons [<u>1912.08823</u>]
- Vector-like quarks [<u>1906.02714</u>]

- a direct (tree-level) modification of beta decays
- a direct (tree-level) modification of muon decay
- a modified W- μ -v coupling entering muon decay

• a modified W-u-d coupling entering beta decays

Lepton flavour universality violation in tau decays ($\tau \rightarrow \mu \nu \nu$) [1403.1269]

- Modified Fermi constant
- Z' boson coupling to muons and tau leptons

- charged Higgses [1206.2634]: Problems with distributions and B_c lifetime
- W' bosons [1412.7164]: Strong constraints from direct LHC searches
- <u>1506.08896</u>, <u>1511.06024</u>]: • LQs [<u>1309.0301</u>, Strong signals in $qq \rightarrow \tau\tau$ searches CMS, 1809.05558; ATLAS, 1902.08103

Charged current tauonic B decays $(b \rightarrow c\ell_{\nu})$ [1403.1269]

LQ

- Z' [W. Altmannshofer, S. Gori, M. Pospelov and I. Yavin 1403.1269,]
 - Necessary effects in B_s mixing
 - Collider constraints
- Loop contributions [1408.1627, 1503.09024, ...]

 - ▶ 2HDM [1903.10440]
 - ▶ R₂Leptoquark [1704.05835]
 - Z' coupling to tops [1704.06005]
- LQs [2203.10111, 1807.02068]

ΔA_{FR} explanation

- Right-handed vector operators LFU
- Good fit requires the tensor operator

$b \rightarrow s\mu^+\mu^- explanations$

Scalars and vector-like fermions [B. Gripaios, M. Nardecchia, S. A. Renner, JHEP 2016]

- A. Celis, M. Jung, X. Q. Li, A. Pich, PLB 2017 R. Alonso, B. Grinstein, J. Martin Camalich, PRL 2017
- W': Strong constraints from direct LHC searches D. Buttazzo, A. Greljo, G. Isidori, D. Marzocca, JHEP 2017
- Leptoquark: Strong signals in $qq \rightarrow \tau\tau$ searches CMS, 1809.05558; ATLAS, 1902.08103

Explanation difficult but possible with Leptoquarks

Charged scalars: Problems with distributions and B_c lifetime

W boson mass

- Loop effects of fermions or scalars with sizable Higgs couplings
- Z-Z' mixing
- SU(2) triplet scalar
- Leptoquarks

- $-- \Delta M_s$
- $b \to s \ell \ell$
- EWPO (with CDF M_W)
- global
- EWPO (without CDF M_W)
- Higgs decays
- $Br(t \to cZ) \times 10^5$
- $\langle \times t \rightarrow cZ \text{ (LHC excluded)} \rangle$

Asymmetries in Z decays $(Z \rightarrow bb^{-})$

- Vector-like leptons
- Z-Z' mixing

(di-)di-jet resonances (jj(-jj))

- two scalar DQ [2208.12254]
- new massive gluons

Multi-lepton anomalies $(e\mu(+b))$

- Production of new scalars [2308.07953]
- Z-Z' mixing

 $\mathcal{N}_{Z,\gamma}$

Higgs-like signals ($yy = \gamma\gamma, \tau\tau, WW, ZZ$)

- New scalar [2303.11351] $650 \text{GeV} \rightarrow bb^{-}(90 \text{GeV}) + \gamma\gamma(125 \text{GeV})$
- pp \rightarrow H \rightarrow (S $\rightarrow \gamma\gamma$,WW)+(S' \rightarrow invisible)

Non-resonant di-electrons (qq⁻ \rightarrow e+e-)

- Z' bosons [2107.13569] \checkmark
- LQs [<u>2104.06417</u>]

Conclusions

- Many intriguing anomalies emerged in the last years:
 - EW observables
 - ▶ LFUV
 - Direct LHC searches

Outlook: Beyond the Standard Model

Future implications

- aµ: Belle-II and MUonE, lattice QCD
- CAA: NA62 (K $\rightarrow \mu \nu$)/(K $\rightarrow \pi \mu \nu$) and PIONEER pion beta decay
- $\tau \rightarrow \mu \nu \nu$: Belle II, FCC-ee, CEPC
- $b \rightarrow c\ell_{\nu}: R(D(*))$ Belle II, LHCb run 3, CMS
- $b \rightarrow s\ell + \ell -:$ non-perturbative methods like dispersion relations
- mW: ILC, CLIC, FCC-ee or CEPC
- eµ(+b): NNLO effects helps to determine SM background, LHC
- $jj(-jj) \& qq^{-} e + e : LHC run 3$