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Main topic of the grant

* Prepare for the forthcoming studies of the diagram of strongly interacting matter by analysis of
sensitivity of known fluctuation observables to the event selection techniques

* Check feasibility of the proposed centrality determination (based on multiplicity, energy deposition
in FHCals, combined) procedures for the fluctuations analysis

* NB: sensitivity of the considered observables to the track reconstruction efficiencies and corrections
methods have been studied by the SPbU group previously (RFBR project 18-02-40097) for the
centrality classes determined by the impact parameter




Event selection



Centrality estimation

* 1mpact parameter (1deal case)

» multiplicity in two forward sub-events —1.2 <7 < — 0.8 and 0.8 < < 1.2 (for simplicity we call
1t ‘VO’ method)

* FHCal method (by INR group)
* 3d method: combines multiplicity and FHCal (by INR group)

* detailed description of the methods were given by A. Seryakov (10.10.23 https://indico.jinr.ru/event/
4066/)
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DCM-SMM min.bias Au+Au 11A GeV

Centrality estimation
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Observables for fluctuations
studies



Fluctuations

To study fluctuations = to study a distribution of a given observable

Any distribution 1s fully parametrized by (full, infinite) set of moments or factorial moments or cumulants or
factorial cumulants

Experimentally
1) one typically looks at a few of them with the lowest order (1.e. mean, variance, skewness, kurtosis etc.)
2) one tries to combine them 1n a way to suppress ‘trivial’ effects (e.g. ratio of cumulants)

3) one can have a joint distribution of x observables, 1.e. under the term ‘fluctuations’ one can also study
‘correlations’ (1n this project we limit x to 2)

4) ‘correlations’ can be studied between observables in the same kinematic acceptance (1 subevent of the
full event) or between observables 1n the separated kinematic acceptances (x subevents)

5) the size of subevents can be varied



Observables

For 1 subevent:

* multiplicity of charged hadrons (V)

» net electric charge (V, — N_)

N
. sum of transverse momenta of charged hadrons (P = 2 Pr)

i=1
. P
. mean transverse momentum in an event (M(p;) = W)
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Fluct. measures

For 1 subevent:

Z;lernt N
. mean multiplicity (event-average) (N) =
nevents 7
- (N*) —(N)’
. scaled variance (event-average) w|[/N]| = )
t ch lant , Z P(N, — N_)z"
net charge cumulants k;, = —/n Z
° g le
" z=1
T2 . 2
. scaled variance (eventt+track-average) o[[py]] = WpT7)) = {pr))
(P12}
* strongly intensive quantities:
N)w|P7] — (Pr)w[N
app, N = Nl = (Pl
(NYol[pr]] M. Gorenstein, M. Gazdzicki, Phys. Rev. C84, 014904 (2011)
N)w|Py] + (Pr)w[N] —2((N - Py) — (N)(P
. Z[PT,N]:< > [ T] < T> [V] (< T> < >< T>)

(N)ol[prll

covered by A. Seryakov (10.10.23 https://indico.jinr.ru/event/4066/)
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Fluct. measures

Findings:

* Current version of 3D method have to be modified to
exclude auto-correlations. The multlpllu('?l for it has to be

measured in separate rapidity windows ([-1.2,-
0.8]U[0.8,1.2])

e Standard FHCal method (energy vs max.E) produces better
or equal results to ER method (energy vs radius of the fit).

* For very central events FHCal* is recommended to use as a
centrality proxy.

* For periphery —VO0¥*, however there will be an effect which
has to be taken into account.

. High'gc moment fluctuations can’t be measured for peripheral
events

* Adding a multiplicity VO cut on periphery makes solely FHCal
selection better, but there is a room for improvement and
careful studies.

covered by A. Seryakov (10.10.23 https://indico.jinr.ru/event/4066/)
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Fluct. measures

Dependence on width of the subevent:

DCM-SMM, Au+Au@11A GeV
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Findings:
Both A[P;, N| and 2[P,, N] tend to 1
with a decrease of acceptance

“True’ results for A[P,, N| are best
reproduced by the’v0’ method

“True’ results for 2[ P, N | are consistent
with all methods
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Fluct. measures

Dependence on width of the subevent:

DCM-SMM, Au+Au@11A GeV
40-60%, 0.15<p_<2 GeV/c
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Findings:

Both A[P;, N] and X[ P, N] tend to 1
with a decrease of acceptance

For more peripheral events FHCal method
1s not applicable for A[ P, N|]
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Observables

For 1 subevent:

N N
c : Qi Zin:l,il/iz/.../in (Prany — M(pr)) - - - (Priny — M(pr))
. pr ‘correlator’ (C, = )

NN —1)...(N - n)

This measure can be considered as complementary to anisotropic flow studies (it 1s sensitive to the
initial stage of the collision) (—>recent interest to v, -p, correlations) . iacalone et al., Phys. Rev. C 103, 024910 (2021)

Higher order cumulants are sensitive to EoS that are inserted into hydro simulations

. C2 by ALICE, STAR, ATLAS etc. ALICE, Eur. Phys. J. C 74, 3077 (2014) STAR, Phys. Rev. C 99, 044918 (2019)

° recent C3 and C4 by ALICE ALICE, e-Print: 2308.16217 [nucl-ex] ATLAS, ATLAS-CONF-2023-061
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For 1 subevent:

Fluct. measures

Pr

. pr ‘correlator’ of the order 1 1s M(py) = —

N

* typically studied as a function of multiplicity

one window

DCM-SMM, Au+Au@11A GeV

0-20% ('vO' mult.)

2.5

mean pT

N
L] l LA

150

15

10

one window DCM-SMM, Au+Au@11A GeV
0-20% ('vO' mult.)

oas | "

0.4;—- ”..l " . “J"br' j

ua?

0.25;—

0.2}

ons?

o1

0.055— -0.8<n<0.8
OE“ Laasnld | P Leasal |
0 50 100 150 200 250 300 350 400 450

Findings:

Slightly negative correlations for ‘true’
central events

Well reproduced by all centrality selection

methods
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Fluct. measures

G,
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Findings:

* (, 1s well reproduced for central events

* Clearly larger statistics 1s needed for more

precise conclusions
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(e)

Fluct. measures

For 1 subevent:

* pr ‘correlators’ C, and C5 with an integrated multiplicity on
DCM-SMM, Au+Au@11A GeV DCM-SMM, Au+Au@11A GeV

a0 0-20%, 0.15<p_<2 GeV/c R a® 0-20%, 0.15<p_<2 GeV/c F | N d | N g S
:; -0.8<n<0.8 = -0.8<n<0.8
"”‘ os * (5 and C; are well reproduced for central
f:: - events (within stat. uncert.)
‘°§‘ 02 * For more peripheral events FHCal method
1E 015 { deviates significantly

ag: 0.05
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Observables

ong ONp

For 2 subevents (typically, two pseudorapidity intervals called ‘forward’ and ‘baéi(ward’):
» multiplicity of charged hadrons (N)rp

» net electric charge (N, — N_)rB
N

sum of transverse momenta ot charged hadrons (P, = Z pT,(,-))F,B
i=1

. P T
. mean transverse momentum 1in an event (M ( pT) = —)FB

In this project we limit ourselves to_ F-B multiplicities correlations and F-B p; ‘correlators’




Fluct. measures

For 2 subevents:

B (NF : NB> — (NF> : (NB) ALICE, JHEP 05, 097 (2015)

. correlation coefficient b (not strongly intensive)

O (N — (Np)?

<NB>0)[NF] + <NF>G)[NB] -2 (<NF . NB> — <NF> : <NB>)M. Gorenstein, M. Gazdzicki, Phys. Rev. C84, 014904 (2011)
E. Andronov, Theor.Math.Phys. 185, 1383 (2015)
(Np+ Np)

. strongly intensive 2[Ng, Np] =

NF_NB

\/ Ny + N  PHOBOS, Phys.Rev. C 74, 011901(R) (2006)

asymmetry C =

- almost strongly intensive 6°(C) = (C?) — (C)* ~ [Ny, N3] (under certain assumptions valid for high multiplicities)
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Subevents configurations
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Findings:

Small windows

on = 0.2

Large windows

on = 0.8

* the shape of the correlation ‘cloud’ looks
similar to the true distribution
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W[N]

Small windows

on = 0.2

Medium windows

on = 0.4

Large windows

on = 0.8

Findings:
* scaled variances for forward windows are
deviated for 3D method
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COrr
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COrr
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Z[]\7]79

Small windows
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Large windows

Findings:

on = 0.8

* very stable results for central and

peripheral (backup)
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2| N, Ng]

Findings:

 for all events all methods produce results
t]
t]

hat are close to the ‘true’ one

1e same is true for 6%(C) (backup)
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CZ,sub and C3,sub

For 2 subevents:

S. Bhatta, C. Zhang, J. Jia, Phys. Rev. C 105, 024904 (2022)

You may construct the same p; ‘correlators’ using particles from separated subevents in order to
suppress short-range correlations effects (similar to introduction of pseudorapidity gap in flow studies)

We selected —0.6 <7 < — 0.4 and 0.4 < 1 < 0.6 so that both subevents are separated from each
other and from centrality estimation acceptance

0.4<m <0.6 DCM-SMM, Au+Au@11A GeV 0.4<n <0.6 DCM-SMM, Au+Au@11A GeV
q0®  -0.6<n <-0.4 0-20%, 0.15<p_<2 GeV/c -0.6<n <-0.4 0-20%, 0.15<p_<2 GeV/c _ _
3;’; 0.7 350.072 FlndlngS
0.6 0.07195 ]
* Gy and G5, are larger than G, and Gy

0.5 0.0719 ® 4

g _— * Gy and G5y, are well reproduced for
. central events (within stat. uncert.)

- L 0.0718

* For more peripheral events FHCal method
deviates significantly

0.2
0.07175

0.1
0.0717
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&

0.07165

FHCal
3D

FHCal
3D
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Short summary

Presented results indicate a different sensitivity of fluctuation measures to the centrality estimation
procedure

Strongly intensive observables tend to suppress this influence (not A[P,, N], too sensitive)

Pure FHCal method has to be enhanced with additional info on multiplicity (otherwise only for
central events)

The current implementation of the 3D method will be reevaluated using multiplicity from forward
subevents

New 3d and higher order moments would be studied using official MC productions

Thank you for your attention!

e.v.andronov@spbu.ru
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