Influence of the choice of initial values of track parameters on track fitting in SpdRoot

Ruslan Akhunzyanov

JINR

SPD Physics Weekly Meeting October 17, 2023

Generation of events

- SpdRoot: branch geometry-update-spring-2023
- Inner tracker: DSSD
- Artificial sample was generated:
 - Pions: isotropical, p = 0 ... 5 GeV/c (with step 0.05 GeV/c), $Z_{\text{primary vertex}} = 0$.

Reconstruction

- Ideal track finding.
- The only requirement for a particle to be accepted as a track (in SpdMCTracksFinder) was total N hits >= 3.
- The corrected function for the drift radius calculation is used (see my talk at SPD Physics Weekly Meeting, Sep 19, 2023).
- Here we compare two procedures of assigning initial values for track fitting:
 - 1) One that is currently coded in SpdRoot;
 - 2) Another, which sets initial values = MC values.

Currently used initialisation procedure

First method (fStartSeedMethod == 1)

- Method SpdTrackFitterGF::DefineStartParameters()
- $|p| = 1 \pm 0.05 \text{ GeV/}c$ (uniformly distributed)
- Momentum direction is defined from the first 2 hits in the inner tracker.
- As the vertex is taken some point on the segment connecting points of closest approach of z axis and the line passing through the first 2 hits in the inner tracker.
- If this procedure fails (for example, if there is no hits in ITS), then fallbacks to the second method.

Second method (fStartSeedMethod == 0)

• Methods SpdTrackFitterGF::SmearStartMom(), SpdTrackFitterGF::SmearStartVertex()

•			Init. value	Smearing
	Momentum	<i>מ</i>	1 GeV/c	uniform, ± 0.1 GeV/c
		θ	0°	gaussian, $\sigma = 3^{\circ}$
		φ	0°	gaussian, $\sigma = 1^{\circ}$
	Vertex	х	0	uniform, ± 0.5 cm
		У	0	uniform, ± 0.5 cm
		Z	0	uniform, ± 0.5 cm

ItsHi

 $60^{\circ} < \theta < 120^{\circ}$

current initialisation procedure

initial values from MC

7

current initialisation procedure

current initialisation procedure

current initialisation procedure

current initialisation procedure

initial values from MC

11

current initialisation procedure

Number of iterations. Pions, $0 < p_0 < 5 \text{ GeV}/c$, $Z_{\text{prim.vtx.}} = 0$.

• Also I tried to increase max number of iterations of the fitter.

initial values from MC max 4 iterations

initial values from MC max 20 iterations

initial values from MC max 4 iterations

initial values from MC max 20 iterations

Conclusions

- Problem with convergency at high momenta was caused by a bad choice of initial track parameters.
- We need a better initialisation procedure!
- χ^2 /ndf distiribution is little affected by changing the initialisation procedure \rightarrow the problem is somewhere else.

additional slides

χ^2 /ndf distribution. Pions, $0 < p_0 < 5$ GeV/*c*, $Z_{\text{prim.vtx.}} = 0$.

χ^2 /ndf distribution. Pions, $0 < p_0 < 5$ GeV/*c*, $Z_{\text{prim.vtx.}} = 0$.

