Charged dark matters, cosmic rays and extended standard model

Jae-Kwang Hwang, JJJ Physics Laboratory

- Three generations of leptons and quarks correspond to the lepton charges (LCs) in this work. Then, the leptons have the electric charges (ECs) and LCs. The quarks have the ECs, LCs and color charges (CCs). The charged dark matters have the EC charges.
- The new particles are applied to explain the origins of the astrophysical observations like the ultra-high energy cosmic rays and supernova 1987A antineutrino data.
- It is proposed that the gravitational force between dark matters should be much stronger than the electromagnetic force between dark matters in order to explain the observed dark matter distributions of the bullet cluster, Abell 1689 cluster and Abell 520 cluster.
- New particles can be indirectly seen from the astrophysical observations like the cosmic ray and cosmic gamma ray.

 [1] J.K. Hwang, talks at 2018 APS April meeting and Phenomenology 2018 symposium: https://indico.cern.ch/event/699148/contributions/2986365/attachments/1642260/2623
 270/Pheno18-Darkmatter-2018.pdf

- [2] Jae-Kwang Hwang, Mod. Phys. Lett. **A32**, 1730023 (2017).
- [3] J.K. Hwang, <u>https://www.researchgate.net/publication/325761228</u> (2018).

[4] J.K. Hwang, <u>https://www.researchgate.net/publication/325200286</u> (2018).

- Three fermionic B1, B2 and B3 dark matters with the rest mass energies of 26.1, 4.27 10¹⁰ and 1.9 10¹⁵ eV are proposed.
- The rest mass energies of the leptons and dark matters are calculated by using the simple equations.
- The ultra high energy cosmic rays and gamma rays are originated from the decays and annihilations of the hadrons including the Q1, Q2 and Q3 quarks with the possible masses of 10¹⁵⁻²⁰ eV and the heavy leptons.
- SN1987A data are discussed in the relation with the B1 dark matter annihilation.
- The 18.7 keV, 3.5 keV and 74.9 keV x ray peaks observed from the cosmic x-ray background spectra are originated not from the pair annihilations of the dark matters but from the x-ray emission of the Q1 baryon atoms. The presence of these cosmic X-rays supports the presence of the Q1 quark with the EC of 4e/3. These data support the existence of heavy quarks like Q1, Q2 and Q3.
- The 1.4 TeV peak observed at the cosmic ray is explained by using the rest mass (1.4 TeV/c²) of the Le particle with the EC charge of -2e. These data support the existence of heavy leptons like Le, Lµ and Lτ.
- Neutron lifetime anomaly and strong force coupling constant are explained.
- It is proposed that the EC, LC and CC charges are aligned along the time axes but not along the space axes.

Standard model (SM)

Dark matter force bosons	Weak forc	e bosons	Strong force bosons
EC	EC		CC - CC
?	+1	W ⁺	8 Gluons
(missing)	0	Z	(Color Octet)
	-1	W-	

Dark matters		Leptons		Quarks
EC		EC, LC		EC, LC, CC
2 x 3 ⁰ = 2 (?) (missing)		2 x 3 ¹ = 6		2 x 3 ² = 18
EC: Electric cl	harge,	LC: Lepton charge (flavor) (Important)		CC: Color charge

1. Standard model (SM),

Leptons (EC,LC) and Quarks (EC,LC,CC)

Quarks (EC,LC,CC)

For CC

For EC

 γ: zero rest mass long range force
 EM force (EC) Gluons: →zero rest mass short range force asymptotic freedom strong force (CC)

Z,W⁺,W⁻: non-zero rest mass

short range force / weak force (EC)

Color charges (CC) (r,g,b): QCD Leptons (EC,LC) and Quarks (EC,LC,CC)

For LC

Bosons: Missing Lepton charge force (LC) (Missing)

Lepton charges (LC) (flavors ?): QFD Missing

Electric charge (EC) (q):

QED

EC, LC and CC charges are separated for bosons and intertwined for fermions. EC: Electric charge, LC: Lepton charge (flavor), CC: Color charge

EC, LC and CC charges are separated for bosons and intertwined for fermions.

2. Extended standard model (ESM), d(b) + u(g) long range force short range force (-1/3,0,-8/3) (2/3,0,-5/3) lepton(EC,LC) \rightarrow EM force ($\gamma(0,0)$), weak force (Z/W/Y(EC,LC)) baryon(EC,LC) W(-1,0,-1) quark(EC,LC,CC) \longrightarrow EM force ($\gamma(0,0,0)$), strong force Coulomb's constant (Z/W/Y(EC,LC,CC)) k(mm) >> k(dd)baston(EC) \longrightarrow EM force (γ (0)), dark matter force (Z/W/Y(EC)) γ**(0,0)** γ**(**0**)** (dark matter) EC, LC and CC charges are intertwined for both of bosons and fermions.

(short range force)

No dark matters

EC, LC and CC charges are separated for bosons and intertwined for fermions.

Bosons (?) associated with LC are missing.

2. Extended standard model (ESM),

EC, LC and CC charges are separated for photons and intertwined for fermions.

Photons (QFD) (?) associated with LC are missing. QFD: quantum flavor dynamics

Extended standard model (ESM), 2.

Unobservable photon

(quarks)

(-1/3,0,-8/3) γ(0,0,0)

Coulomb's constant $k(mm: \gamma(0,0)) = k >> k(dd: \gamma(0)) > 0$

1. Standard model (SM), (Gravitons)

Gravitation constant G(mm:g) = $G(dd:g) = G_N$

$$d(b) \xleftarrow{g} u(g) \qquad e \xleftarrow{g} \mu$$

(-1/3,LC,b) G_N (2/3,LC,g) (-1,LC) G_N (-1,LC)

No dark matters

EC, LC and CC charges are intertwined for fermions, but the graviton is not associated with the EC, LC and CC charges.

Extended standard model (ESM), 2. Gravitation constant $G_{N}(mm:g(0,0,0)) = G_{N} < G_{N}(dd:g(0))$ $d(b) \xleftarrow{(EC,LC,CC)} u(g)$ $(-1/3,0,-8/3) \xrightarrow{g(0,0,0)} (2/3,0,-5/3)$ $G_N(mm)$ $\begin{array}{cccc} e & \underbrace{(\text{EC},\text{LC})} & \mu & \text{B2} & \underbrace{(\text{EC})} \\ (-1,-2/3) & g(0,0) & (-1,-5/3) & (-5/3) & g(0) \\ & G_{N}(\text{II}) & & G_{N}(\text{dd}) \end{array}$ → B1 (-2/3)Unobservable graviton Dark graviton Normal graviton (quarks, hadrons) (dark matters) (leptons) EC, LC and CC charges are intertwined $g(0,0,0) \longleftrightarrow g(0,0) \longleftrightarrow g(0)$ for gravitons and fermions.

Standard model

```
Baryon number (B): baryon +1, anti-baryon:-1, others: 0
```

```
Lepton number (L): lepton: +1, anti-lepton: -1, others: 0
```

B - L symmetry

```
Quark flavor quantum numbers (S, C, B', T): quark: +1, anti-quark: -1, others: 0
```

Lepton family numbers (L_e, L_{μ}, L_{τ}): lepton: +1, anti-lepton: -1, others: 0

```
Hyper-charge (Y): Y = B + S + C + B' + T
```

```
Weak charge (Y_W): Y_W = 2(Q - I_3)
```

```
X-charge (X): X = 5(B' - L) - 2Y_{W}
```

Electric charge (Q); Color charges (red, green, blue)

Three-dimensional quantized space model

```
Electric charge (EC); Lepton charge (LC); Color charge (CC)
Bastons(Dark matters) (EC); Leptons (EC,LC); Quarks (EC,LC,CC)
Baryons (EC,LC,-5); Mesons (EC,LC,0)
```

Charge conservations of EC, LC and CC

		Basto	ns (EC)	L	eptons	(EC,LC)		Quarks(EC,LC,CC)			C)		
	EC				EC				EC				
X1	-2/3	B1			0	ν _e	ν_{μ}	ν_{τ}	2/3	u	С	t	
X2	-5/3	B2			-1	е	μ	τ	-1/3	d	S	b	
X3	-8/3	B3			-2	Le	Lμ	LT	-4/3	Q1	Q2	Q3	
Total	-5				-3				-1				
	Dark matters			LC				LC				n	
X4						v _e	е	Le	0	u	d		
X5	$-1 = \frac{2}{3} - \frac{1}{3} - \frac{4}{3} = \frac{3}{2} - \frac{1}{3} - \frac{2}{3} = \frac{3}{2} - \frac{1}{3} - \frac{2}{3} = \frac{3}{3} - \frac{1}{3} -$				-5/3	ν_{μ}	μ	Lμ	-1	С	S	Q2	
X6	-5 = -2/3 - 5/3 - 8/3				-8/3	ν _τ	τ	Lτ	-2	t	b	Q3	Х
Total	Fa	 ch flav	 or (chai	rae)	-5				-3				
		rrespon	ds to ea					CC					
X7	dir	nension	nal axis	•					-2/3(r)				
X8	Forc	e carry	ing bos	sons: E	C, LC,		-5/3(g)						
X9	+ EC, LC, CC Conservations								-8/3(b)				
Total									-5				

The B1, B2 and B3 dark matters interact gravitationally but not electromagnetically with electrons and protons because they do not have the LC and CC charges.

3-dimensional quantized space model

The x1x2x3 space x7x8x9 CC s the space where we live. LC x4x5x6 x1x2x3 EC Coulomb's constant k(mm) >> k(dd)

	Dar	ork matter forceWeak force (EC,LC)Strong force (EC,LC,CC)						Standard model						
	EC				EC				EC					
X1	0	Z(0)			0	Z(0,0)	Z(0,-1)	Z(0,-2)	0	Z(0,0)	Z(0,-1)	Z(0,-2)	γ g γ g	
X2	-1	W(-1)			-1	W(-1,0)	W(-1,-1)	W(-1,-2)	-1	W(-1,0)	W(-1,-1)	W(-1,-2)	/ X 1X2X3/	
X3	-2	Y(-2)			-2	Y(-2,0)	Y(-2,-1)	Y(-2,-2)	-2	Y(-2,0)	Y(-2,-1)	Y(-2,-2)	String theory	
Total	-3				-3				-3				Kaluza-Klein Compactification Braneworld model	
					LC				LC				model x4,x5,x6	
X4					0	Z(0,0)	W(-1,0)	Y(-2,0)	0	Z(0,0)	W(-1,0)	Y(-2,0)	$\begin{pmatrix} 0 & 0 \\ 0 $	
X5					-1	Z(0,-1)	W(-1,-1)	Y(-1,-1)	-1	Z(0,-1)	W(-1,-1)	Y(-1,-1)		
X6	F 1	ст.			-2	Z(0,-2)	W(-1,-2)	Y(-2,-2)	-2	Z(0,-2)	W(-1,-2)	Y(-2,-2)	X1X2X3 Brane v4 Brane	
Total	- Each	sponds	(cha: to ea	rge) - ach	-3				-3					
	dime	ensional	axis						СС				3-dimensional quantized space model	
X7	x_7 Z. W ⁻ , gluons (SM) \rightarrow						1	0				The x1x2x3 space x7x8x9 CC is the space where we live.		
X8	Z(0,LC),W(-1,LC),Z(0,0,CC) (ESM)							M)	-1					
X9	7/W			+)) ←	 →7	 7/W/Y(F			-2				x1x2x3 EC	
Total	$\begin{array}{c c} \hline & & & \\ \hline & & \\ \hline \\ \text{otal} & & \\ \hline \\ \hline$							-3				Coulomb's constant		
L	Z/W/Y(-1 0)CC(-2) = Z/W/Y(-1 0 -2)									k(mm) >> k(dd)				

Z/W/Y(-1,0)CC(-2) = Z/W/Y(-1,0,-2)

Z(0,-1)) boson can be observed in the decay channels like $\mu^{-} - e^{+}$, c - \overline{u} and $\tau - \mu^{+}$ but not in the decay channels like $e - e^{+}$, $u - \overline{u}$ and $\tau - \overline{\tau}$.

W(-1,-1)) boson can be observed in the decay channels like $\mu^{-} - \overline{\nu_{e}}$, b - \overline{c} and s - \overline{u} .

Enhanced neutrinos can be observed in LHC and in cosmic ray. SM (Standard Model)

B. Capdevila et al., arXiv: 1704.05340 (2017).

(1/3, 1)h (1,0)(1/3, 2)EC(Electric Charge) conservation LC (Lepton Charge) is not conserved. New Physics (NP) - Extended standard model c (-2/3,1,2/3) ► s (1/3,1,2/3) μ e 1,0) (-1,-2/3) (-1,-5/3) μ^+ (1, 5/3)(1, 8/3)

EC, LC and CC(Color charge) conservations.

 $\mathsf{R}_{\mathsf{D}} = \mathsf{B}(\mathsf{B} \longrightarrow \mathsf{D} \ \tau \ \overline{v} \)/\mathsf{B}(\mathsf{B} \longrightarrow \mathsf{D} \ | \ \overline{v} \)$ 0.440 0.297 $\mathsf{R}_{\mathsf{D}^*} = \mathsf{B}(\mathsf{B} \longrightarrow \mathsf{D}^* \tau \,\overline{v}) / \mathsf{B}(\mathsf{B} \longrightarrow \mathsf{D}^* | \overline{v}) \quad 0.332$ 0.252 (2/3)H⁻ (-1) u e ve EC(Electric Charge) conservation LC (Lepton Charge) is not conserved. New Physics (NP) - Extended standard model ► C(2/3,-1,-2/3)

BABAR

data

SM

μ (-1,-8/3) (-1,-5/3) ν μ e (0, 5/3)(0, 2/3)

EC, LC and CC(Color charge) conservations. BABAR data: J.P. Lees et al., arXiv:1303.0571v1 (2013).

Origin problem of the cosmic ray anti-Helium events

Six anti-³He cosmic ray events and two anti-⁴He cosmic ray events were observed by AMS-02 measurements.

Q1 baryon (Q,R baryons) decays (present work)

 $\begin{array}{rcl} N(Q1,u,u)(0,0,-5) & \longrightarrow p & + \ e & + \ \overline{v_e} \ (Favored) \\ R(Q1,d,u)(-1,0,-5) & \longrightarrow p & + \ 2e & + \ 2\overline{v_e} \ (Favored) \\ pR & \longrightarrow pp + 2e & + \ 2\overline{v_e} \longrightarrow \ ^2He & + \ 2\overline{v_e} \\ & pn & + \ e & + \ \overline{v_e} \longrightarrow \ d & + \ \overline{v_e} \\ ppQ & \longrightarrow ppn & + \ 2e & + \ 2\overline{v_e} \longrightarrow \ ^3He & + \ 2\overline{v_e} \ (Favored) \\ ppR & \longrightarrow ppn & + \ 2e & + \ 2\overline{v_e} \longrightarrow \ ^4He & + \ 2\overline{v_e} \end{array}$

Enhanced anti- ³He events are originated from the anti- (ppQ) decay.

This supports the existence of the new heavy Q1, Q2 and Q3 quarks

Anti-matter clouds and anti-matter stars are proposed by Poulin et al. as their origins.

V. Poulin et al., "Where do the AMS-02 anti-helium events come from?" arXiv:1808.08961v1 (2018).

Origin problem of the missing neutrinos

Hadronization (Leptonization) Baryon(EC,LC,-5) \longrightarrow Baryon(EC,LC) CC(-5) Meson(EC,LC,0) \longrightarrow Meson(EC,LC) CC(0) Lepton1 - Hadron2: F₁₂ = F₁₂(EC) + F₁₂(LC) Hadron1 - Hadron2: F₁₂ = F₁₂(EC) + F₁₂(LC) + F₁₂(CC)

Examples;

$$u(2/3,0.-2/3) - S(-1/3,-1,-5/3): F_{12} = \frac{1}{4\pi r^2} \left(\frac{(-3/9)}{\epsilon_0(EC)} + \frac{(10/3)}{\epsilon_0(CC)} \right)$$

$$e(-1,-2/3) - p(1,0): F_{12} = \frac{-1}{4\pi r^2 \epsilon_0(EC)} \quad \text{Coulomb Force}$$

$$v_e(0,-2/3) - e(-1,-2/3): F_{12} = \frac{(4/9)}{4\pi r^2 \epsilon_0(LC)} \quad \text{Lepton charge}$$

The weak lepton charge interactions could explain the missing neutrinos observed at the solar neutrino experiments, atmospheric neutrino experiments and nuclear reactor neutrino experiments.

Rest mass energy (E=mc²) calculations of leptons and bastons (dark matters)

```
\begin{array}{l} \mathsf{F}(\mathsf{EC},\mathsf{LC}) = -23.24488 + 7.26341 \ |\mathsf{EC}| - 1.13858 \ \mathsf{EC}^2 \\ &+ 0.62683 \ |\mathsf{LC}| + 0.22755 \ \mathsf{LC}^2 \\ \mathsf{E} = 11.1950 \ 10^{38+2\mathsf{F}} & \text{for 3 bastons with } \mathsf{LC} = 0 \\ \mathsf{E} = 8.1365 \ 10^{38+2\mathsf{F}} & \text{for leptons } (\nu_{\mathrm{e}},\nu_{\mathrm{\mu}},\nu_{\tau},\,\mathsf{e},\mathrm{\mu},\tau) \\ \mathsf{E} = 0.4498 \ 10^{38+2\mathsf{F}} & \text{for leptons } (\mathsf{Le},\mathsf{L}\mu,\mathsf{L}\tau) \end{array}
```

```
based on m(Le) = 1.4 \text{ TeV/c}^2.
```

 $E = mc^2$; energy unit: eV

The rest mass energies of the leptons and dark matters are calculated in order to show the energy scales of these particles by using the simple equations.

(EC,LC)	E _{exp} (eV)	E _{calc} (eV)	(EC,LC)	E _{exp} (eV)	E _{calc} (eV)
$v_{e}(0,-2/3)$?	2.876 10 ⁻⁷	e(-1,-2/3)	5.11 10 ⁵	5.11 10 ⁵
$v_{\mu}(0,-5/3)$?	5.947 10 ⁻⁵	μ(-1,-5/3)	1.057 10 ⁸	1.057 10 ⁸
$v_{\tau}(0,-8/3)$?	1.000 10-1	τ(-1,-8/3)	1.777 10 ⁹	1.777 10 ⁹
$L_{e}(-2,-2/3)$	1.4 10 ¹²	1.4 10 ¹²	B1(-2/3)	26.121	26.121
$L_{\mu}(-2,-5/3)$?	2.896 10 ¹⁴	B2(-5/3)	4.27 10 ¹⁰	4.27 10 ¹⁰
$L_{\tau}(-2,-8/3)$?	4.871 10 ¹⁷	B3(-8/3)	?	1.948 10 ¹⁵

The rest mass energies of the leptons and bastons (dark matters) are calculated and compared with the experimental values.

Cosmic-ray electron/positron excess at DAMP (Dark Matter Particle Explorer) S.F. Ge and H.J. He, arXiv: 1712.02744 (2017). These data support the existence of heavy leptons like Le, L μ and L τ .

Decaying Fermionic Dark Matter Search with CALETS. S. Bhattacharyya et al., arXiv: 1712.02744 (2017).

These data support the existence of heavy leptons like Le, Lµ and L τ .

Mark Pearce (For the PAMELA Collaboration), From talk presentation on PAMELA – a satellite experiment searching for dark matter with cosmic ray antiparticles.

These data support the existence of heavy leptons like Le, L μ and L τ .

 $\frac{Le}{Le} \frac{\gamma}{\gamma}$

Cosmic gamma ray spectrum by CALET 5 year measurements from the Galactic center including galactic diffusing background O. Adriani et al., EPJ Web of Conf. 95, 04056 (2015). These data support the existence of heavy leptons like Le, L μ and L τ .

Le – anti Le annihilation peak.

V. Gammaldi, arXiv: 1412.7639 (2014). TeV gamma ray spectrum from RX J1713.7-3946 with HESS and Fermi-LAT data. S. Federicici et al., arXiv: 1502.06355v1 (2015). Analysis of GeV-band gamma-ray emission from SNR RX J1713.7-3946 with HESS and Fermi-LAT data.

A rest mass of Le could be 1.4 TeV/c^2 .

These data support the existence of heavy leptons like Le, Lµ and L τ .

Heavy Q1 baryon atoms

Possible discoveries of 18.7 keV, 3.5 keV and 74.9 keV x ray peaks support the existence of the new heavy Q1 quark with EC = -4/3. This can justify the Q1, Q2 and Q3 quarks.

diffuse cluster x-ray emission

E. Bulbul et al. 2014, ApJ, 789, 13 (BU14). A. Boyarsky et al., 2014, Phys. Rev. Lett., 113, 251301 (BO14).
L. Gu et al., Astronomy & Astrophysics 584, L11 (2015). O. Urban et al. 2015, MNRAS, 451, 2447 (U15).

3.5 keV diffuse x-ray emission line from nearby galaxies and galaxy clusters

3.5 keV AGN x-ray absorption line from 2009 Chandra data for Perseus cluster

J.P. Conlon et al. arXiv: 1608.01684v3 (2017).

diffuse cluster x-ray emission and the point-like central Active Galactic Nucleus (AGN) x-ray absorption

3.5 keV AGN x-ray spectrum with Hitomi for Perseus cluster

F.A. Aharonianet al. arXiv: 1607.007420v2 (2017).

Decaying dark matter search with NuSTAR deep sky observation A. Neronov et al., arXiv:1607.07328v1 (2016)

I. Georgantopoulos and A. Akylas, arXiv:1809.03747v1 (Sep. 2018)

Broadband energy spectrum of the X-ray pulsar 4U 0115+63 from IBIS/ISGRI and JEM-X(INTEGRAL) data in its bright state during the out burst in May-June 2011. P.A. Boldin et al., Astronomy Letters 39, 375 (2013).

Possible discoveries of 3.5 keV and 74.9 keV x ray peaks support the existence of the new heavy Q1 quark with EC = -4/3. This can justify the Q1, Q2 and Q3 quarks.

Origin problem of the ultra high energy cosmic rays

Q1 baryon (Q,R baryons) decays (present work)

$$\begin{array}{rcl} N(Q1,u,u)(0,0,-5) & \longrightarrow & p + e + \overline{\nu_{e}} \text{ (Favored)} \\ R(Q1,d,u)(-1,0,-5) & \longrightarrow & p + 2e + 2\overline{\nu_{e}} \text{ (Favored)} \\ pR & \longrightarrow & pp + 2e + 2\overline{\nu_{e}} \longrightarrow & ^{2}\text{He} + 2\overline{\nu_{e}} \\ & pn + e + \overline{\nu_{e}} \longrightarrow & d + \overline{\nu_{e}} \\ ppQ & \longrightarrow & ppn + 2e + 2\overline{\nu_{e}} \longrightarrow & ^{3}\text{He} + 2\overline{\nu_{e}} \text{ (Favored)} \\ ppR & \longrightarrow & ppnn + 2e + 2\overline{\nu_{e}} \longrightarrow & ^{4}\text{He} + 2\overline{\nu_{e}} \end{array}$$

The ultra high energy cosmic rays are originated from the Q1, Q2 and Q3 hadron decays. The rest mass energies are proposed as $E(Q1) = 5 \ 10^{15}$ eV, $E(Q2) = 7 \ 10^{17}$ eV and $E(Q3) = 10^{20}$ eV.

This supports the existence of the new heavy Q1, Q2 and Q3 quarks

Ultra high energy neutrino measurements

M.G. Aartsen et al., arXiv: 1412.5106 (2014) IceCube-Gen2: A Vision for the Future of Neutrino Astronomy in Antarctica

Comparison of cosmic ray spectra resulting from IceTop-73 (IceCube) analysis with other experiments S. Hussain, arXiv: 1301.6619v1 (2013). Ultra-high energy cosmic ray spectra The ultra high energy cosmic rays are originated from the decays of the hadrons including the Q1, Q2 and Q3 quarks. The rest mass energies are $E(Q1) = 5 \ 10^{15} \ eV$, $E(Q2) = 7 \ 10^{17} \ eV$ and $E(Q3) = 10^{20} \ eV$.

B2 fermionic dark matter measurements

The 42.7(7) GeV peak was identified in the gamma-ray spectrum from the Fermi Large Area Telescope (LAT) in the directions of 16 massive nearby Galaxy Clusters. Y.F. Liang et al., Phys. Rev. D 93, 103525 (2016).

The 42.7 GeV peak is proposed as the B2 annihilation peak.

Dark matter rest mass energy was reported around the energy of 10.6 GeV or 44.8 GeV (~ 42.7 GeV ?).

Dark Matter implications of DAMA/LIBRA-phase2 results S. Baum etal., ArXiv:1804.01231v1 (2018)

The curve A fits the observed data well except the 6 BG data. The curve A uses the proposed dark matter mass of B1. It is proposed that the B1 particles come from SN 1987A to the earth. The energies, E(v) of the observed neutrinos are reinterpreted as the energies, E(B1) of the B1 dark matters. This supports indirectly that the rest mass energy of the B1 dark matter is 26.12 eV. Here, t_0 is the light travel time from SN 1987A to the earth. The equation is taken from the paper by Ehrlich. R. Ehrlich, Astropart. Phys. 35, 625 (2012).

NGC1052-DF2 without the dark matters: P. van Dokkum et al., Nature 555, 629 (2018).

Negative and positive charges along the negative time axis and positive time axis, respectively, can be added and subtracted like the scalars on the three-dimensional quantized spaces. The EC, LC and CC charges are different from the vectors like the angular momenta on the threedimensional quantized spaces.

Coulomb's constant k(mm) = k >> k(dd) > 0

k(mm): γ(0,0) k(dd): γ(0) dark photon Charged dark matters

F_g(dd) >> F_c(dd) > 0 at the present time

 $F_g(dd)$: Attractive force $F_c(dd)$: Repulsive force

The lifetime of the p^u state is long enough to show the neutron lifetime anomaly.

The beta (p^u) ray could be observed by subtracting the beta (p) ray from the total beta $(p+p^u)$ ray spectrum.

B. Fornal, B. Grinstein, arXiv:1801.01124

Q: momentum transfered to quarks in deep inelastic scattering experiments

S. Bethke, arXiv:hep-ex/0606035

The pressure curves are plotted only for the explanation.

The $<\!\phi\!>$ curve corresponds to the experimental curve.

V.D. Burkert et al., Nature 557, 396 (2018)

SM		Leptons, Mesons, Baryons (EC)	Quarks (EC,CC)				
Long Range Force (EM Force), Photon		F(EC), QED, γ					
Short Range Force		Weak Force Massive bosons (Z, W⁺, W⁻) (EC)	Strong Force, QCD, Massless gluons (CC)				
ESM (TQSM)	Bastons (EC) (Dark matters)	Leptons, Mesons, Baryons (EC,LC))	Quarks (EC,LC,CC)				
Long Range Force (EM Force), Photon QED	F(EC), Dark photon γ(0)	F(EC,LC) = F(EC)+F(LC) Normal photon $\gamma(0,0)$	F(EC,LC,CC) = F(EC)+F(LC)+F(CC) Unobservable photon $\gamma(0,0,0)$				
Short Range Force Massive bosons	Dark matter force Z/W/Y(EC)	Weak force Z/W/Y(EC,LC)	Strong force Z/W/Y(EC,LC,CC)				
SM: Standard Model, ESM: Extended Standard Model, TQSM: Three-dimensional Quantized Space Model, QED: Quantum Eletro-Dynamics,							

QCD: Quantum Chromo-Dynamics, EM Force: Electro-Magnetic Force

In SM, the force corresponding to the lepton charges (LC) is not considered.

Coulomb's constant k(mm) = k(dd) = kNeutral dark matter $F_g(dd) >> F_c(dd) = 0$ at the present time

ESM (TQSM)

Coulomb's constant k(mm) = k >> k(dd)Charged dark matters $F_g(dd) >> F_c(dd) > 0$ at the present time $k(mm): \gamma(0,0)$ $k(dd): \gamma(0)$ dark photon

