New Trends in High Energy Physics

International large research infrastructure of JINR, Dubna.

M.G.Itkis

24-30 September, Budva

* Search for superheavies

Cross sections of symmetric fragment formations

For the studied reactions the excitation energies at the barrier energy vary strongly (36MeV for the Ca+Pu, 44MeV for the Ti+U and 41MeV for the Cr+Th). It leads to decrease of CS in the case of Ti+U and Cr+Th for 3n ER channel.

Superheavy Elements (SHE) Factory – the Goals

> Experiments at the extremely low (σ <100 fb) cross sections:

- Synthesis of new SHE in reactions with ⁵⁰Ti, ⁵⁴Cr ...(119, 120);
- Shaping of the region of SHE (synthesis of new isotopes of SHE);
- Study of decay properties of SHE;
- Study of excitation functions.

Experiments requiring high statistics:

- Nuclear spectroscopy of SHE;
- Precise mass measurements;
- Study of chemical properties of SHE.

Superheavy Element Factory

Onset of day-one experiments – Nov. – Dec. 2018

Specialized high-current cyclotron DC280

DC280 (expected) E=4÷8 MeV/A		
⁷ Li	4	1×10 ¹⁴
¹⁸ O	8	1×10 ¹⁴
⁴⁰ Ar	5	6×10 ¹³
⁴⁸ Ca	5	1×10 ¹⁴
⁵⁴ Cr	5	2×10 ¹³
¹³⁶ Xe	5	1×10 ¹⁴
²³⁸ U	7	5×10 ¹⁰

New FLNR's gas-filled separator

Reaction	Transmission
²⁴⁴ Pu(⁴⁸ Ca,3n) ²⁸⁹ 114	60 %
²⁴⁴ Pu(⁵⁸ Fe,4n) ²⁹⁸ 120	75 %

Experiments

Synthesis of element 119 in the ²⁴⁹Bk + ⁵⁰Ti reaction *(first experiment)* The amount of ²⁴⁹Bk target material is **35 mg**;

The average beam intensity of 50 Ti is 5 pµA. Irradiation time is 150 days

_____June_December 2019

When element 117 is synthesized in the ${}^{249}Bk + {}^{48}Ca$ reaction: $I({}^{48}Ca) = 5 p\mu A$

 $\Delta x(^{249}Bk) = 0.35 \text{ mg/cm}^2$

 $P(^{249}Bk) = 35 mg$

L = $0.88 \cdot 10^{18} \cdot 3 \cdot 10^{13} = 2.65 \cdot 10^{31} \text{ cm}^{-2} \cdot \text{s}^{-1}$

Expected number of events:

 $N = 2.65 \cdot 10^{31} \cdot 2.5 \cdot 10^{-36} \cdot 0.5 \cdot 0.864 \cdot 10^5 = 3/d \text{ or } 450 / 150 \text{ d}$

In the $^{249}Bk + ^{50}Ti$ reaction At a cross section of 25 fb 4-5 /150 d

Mega-science project at JINR: Nuclotron Based Ion Collider Facility (NICA)

NICA (Nuclotron-based Ion Colider fAcility)

Main targets:

http://nica.jinr.ru/

- study of hot and dense baryonic matter
 - at the energy range of max baryonic density
- investigation of nucleon spin structure, polarization phenomena

Construction of Collider of relativistic ions from p to Au, polarized protons and deuterons

> with max energy up to $\sqrt{S_{NN}}$ = 11 GeV (Au⁷⁹⁺) and =27 GeV (p) $\sqrt{S_{NN}}$ = 11 GeV (Au⁷⁹⁺, L ~ 10²⁷ cm⁻² c⁻¹) \sqrt{S} =27 GeV (p, L ~ 10³² cm⁻² c⁻¹)

- Bulk properties, EOS particle yields & spectra, ratios, femtoscopy, flow
- In-Medium modification of hadron properties
- Deconfinement (chiral), phase transition at high r_B enhanced strangeness production
- QCD Critical Point event-by-event fluctuations & correlations
- Strangeness in nuclear matter hypernuclei

The observables in AA, pA and pp collisions: multiplicity of produced hadrons (π , K, p, Λ , Ξ , Ω), electromagnetic probes: electrons, gammas, vector meson decays, event-by-event fluctuations, femtoscopy of π , K, p, Λ

QCD matter at MPD@NICA :

- Highest net baryon density
- Energy range covers onset of deconfinement
- Complementary to the RHIC/BES, FAIR , J-PARC-HI and CERN experimental programs

Status of the NICA complex realization

NICA infrastructure developments:

- Development of liquid helium and liquid nitrogen plants
- Operation of the SC-magnets test facility
- Modernization of electricity systems
- Upgrading of the water pipelines, thermal grids and sewer lines
- Construction of buildings

NICA Center

QCD matter at the **NICA** energies:

- maximum in the net baryon density density frontier;
- > maximum in K^+/π^+ ratio;
- > maximum in Λ/π ratio;
- maximum yield if hypernuclei
- transition from a Baryon dominated system

to a Meson dominated one;

- \succ maximum of the Λ polarization;
- 1-st order transition & mixed phase creation;
- Critical Endpoint ?

Site of the Collider construction

Magnet production: at ASG (Genova) & Vitkovice HM

Development of the facility for assembling and cryogenic tests of superconducting magnets for NICA

2013

Neutrino program

Kall

n n A

Бруно Понтекоры

Astrophysical neutrino sources

Coherent neutrino-nucleus scattering (vGEN) Precise measurements of neutrino oscillations (Daya Bay, BOREXINO) Neutrino mass hierarchy (JUNO, NOvA) Neutrinoless 2β –Decay search: (SuperNEMO, GERDA, Majorana)

'White Book'' documents the JINR neutrino program

Every experiment — participant of the neutrino program — is described in a uniform format in the Book (about 300 pages):

About 200 (100) participants (scientists) take part in the JINR neutrino program, 60 of them are younger 35 years old. JINR member-states are strongly involved. Internationality — NOvA, JUNO, EDELWEISS, SuperNEMO, ... \rightarrow http://dlnp.jinr.ru/en/neutrino-research

Neutrino programme: Baikal

Central Physics Goals:

- Investigate Galactic and extragalactic neutrino "point sources" in energy range > 3 TeV
- Diffuse neutrino flux energy spectrum, local and global anisotropy, flavor content
- Transient sources (GRB, binaries, ...)
- Dark matter indirect search
- Exotic particles monopoles, Q-balls, nuclearites, ...

<u>Neutrino programme: DANSS</u>

Reactor monitoring and search for short-range neutrino oscillations

JINST 11 (2016) no.11, P11011; arXiv:1606.02896

- Segmented "XY" plastic scintillator (1 m³ =1.1 tn) close to the core of the Kalinin NPP reactor #4
- Overburden ~ 50 m w.e. (reactor cauldron, cooling pond, concrete)
- 3D-information about each event
- IBD count rate ~4000 $\overline{v_e}$ / day; Signal / BG ~ 40
- Lifting platform => distance variable on-line (L ≈ 10.7-12.7 m)
- Status: data taking

Reactor

core

DANSS

Significance of the best regions

JINR's Large-Scale Basic Facilities

The IBR-2M pulsed reactor of periodic action is included in the 20-year European strategic programme of neutron scattering research.

movable

Additiona

Fuel: PuO_2 , Average power: 2 MW (8·10¹² n/cm²/s), 5Hz, Pulsed power:1500 MW (5·10¹⁵ n/cm²/s), width: 215/320 µs, 14 neutron channels.

Nanosystems and Nanotechnologies

Novel Materials

Biomedical Research

Fe (3-5 нм) Cr (1-2 нм)

Engineering diagnostics. Earth Sciences

Fundamental and applied research in condensed matter physics and related fields: biology, medicine, material sciences, geophysics, engineer diagnostics - aimed at probing the structure and properties of nanosystems, new materials, and biological objects, and at developing new electronic, bio- and information nanotechnologies.

Thank You!