

ACTUAL STATUS OF

V. Belov on behalf of DANSS collaboration

DANSS

Detector of the reactor AntiNeutrino based on Solid-state Scintillator

Modular structure provides **3d space pattern** of each event JINST 11 (2016) no.11, P11011; arXiv:1606.02896 [physics.ins-det]

1.1 tonne of PS = 5.1×10^{28} Hydrogen atoms

DANSS features:

- Segmented "XY" plastic scintillator (1 m³) close to the core of the Kalinin NPP reactor #4
- Overburden ~ 50 m w.e. (reactor cauldron, cooling pond, concrete)
- 3D-information about each event
- IBD count rate ~10⁴ v_e / day;
 Signal / Background ≥ 30
- On-line lifting platform => movable distance (L=10 –12 m)

MOTIVATION

Applied physics

- Measurement of the actual reactor power (Nv)
- Deducing the actual fuel composition (Ev)
- On-line reactor monitoring
- Nonproliferation of nuclear technology (prevent unauthorized extraction of 239Pu)

Fundamental physics

Search for short-distance neutrino oscillations

Reactor antineutrino anomaly

Calibration with ²²Na, ⁶⁰Co, ¹³⁷Cs, ²⁴⁸Cm (few Bq)

CALIBRATION VIA COSMIC MUONS

VETO

Background monitoring

 Permanent monitoring of gamma-BG with four Nal (3'x3'):1 inside + 3 outside the DANSS shield

no (ON – OFF) visible difference

 Permanent monitoring of neutron flux with three ³He neutron counters: 1 inside +2 outside the shield

- $\Phi n = 0.57 \text{ outside (OFF)}$ $\Phi n = 300.4 \text{ outside (ON)}$ $\Phi n = 0.03 \text{ inside (OFF)}$ $\Phi n = 0.04 \text{ inside (ON)}$ $\Phi n = 6.0 \text{ en plein air}$
- Episodic measurements with HPGe and "MuMeter"

Aug 2015

IBD CRITERIA

Three independent DAQ systems & 2 hard triggers:

-Trigger 1: pair of pulses, $2\mu s < \Delta T < 80 \ \mu s$, at least one $E_{PMT} > 0.5$ MeV for prompt and delayed pulses both, read 100 QDC channels, 100 waveforms (62.5 MS/s)

-Trigger 2: $\Sigma E_{PMT} > 0.7 MeV$, read 2590 waveforms (125 MS/s) from 50 PMT, 2500 MPPC and 40 μ -veto detectors, look for correlated pairs offline

-Trigger veto

An example of time distributions

An example of energy spectra (partial segmentation)

IBD total rate vs effective distance

Reactor power seen by neutrino flux

Fuel evolution

Spectra ratio: 3 months at the very end of campaign 4 to 3 months a month after campaign 5 start.

The first month at the start of campaign skipped because of samarium poisoning of the reactor.

No contradiction to Monte Carlo simulations using Huber and Mueller spectra seen.

	Begin 4	End 4	Begin 5
²³⁵ U	63.7%	44.7%	66.1%
²³⁸ U	6.8%	6.5%	6.7%
²³⁹ Pu	26.6%	38.9%	24.9%
²⁴¹ Pu	2.8%	8.5%	2.3%

Exclusion region

Feldman-Cousins analysis of the best point

Summary

- DANSS has been taking data since Apr 2016 (data available for analysis since Oct 2016).
- 4910 IBD events/day are detected in the closest position
- Background: 133 μ-induced events/day (2.7% for Up pos.)
- Spectrum dependence on the fuel composition within the campaign is clearly visible and agrees with HM-prediction
- A large fraction of allowed sterile oscillation parameters region is excluded in a model-independent way. The RAA point ($\Delta m^2=2.3 \text{ eV}^2$, $\sin^2(2\theta)=0.14$) is excluded at 5σ level.
- The best point at ($\Delta m^2=1.4 \text{ eV}^2$, $\sin^2(2\theta)=0.05$) has 2.8 σ significance.
- DANSS data taking and analyses: on-going

Spare slides

- Time window ± 15 ns
- Single pixel hits require PMT confirmation

Building Pairs

Positron candidate: > 1 MeV in continuous ionization cluster (PMT+SiPM)

Neutron candidate: > 3.5 MeV total energy (PMT+SiPM), SiPM multiplicity >3

Search positron 50 µs backwards from neutron

Significant background by uncorrelated triggers. Subtract accidental background events: search for a positron candidate where it can not be present – 50 μ s intervals 5, 10, 15 ms etc. away from neutron candidate. Use 16 non-overlapping intervals to reduce statistical error. All physics distributions = events - accidental events/16

Trigger and events

30

35

Time, us

50

IBD CRITERIA

Three independent DAQ systems & 2 hard triggers:

-Trigger 1: pair of pulses, $2\mu s < \Delta T < 80 \ \mu s$, at least one $E_{PMT} > 0.5$ MeV for prompt and delayed pulses both, read 100 QDC channels, 100 waveforms (62.5 MS/s)

-Trigger 2: $\Sigma E_{PMT} > 0.7 MeV$, read 2590 waveforms (125 MS/s) from 50 PMT, 2500 MPPC and 40 μ -veto detectors, look for correlated pairs offline

-Trigger veto

Compensation of the fuel evolution

