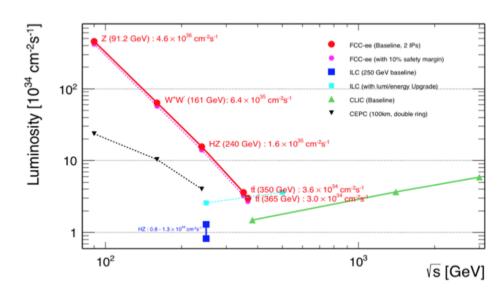


Future ee Colliders and Colour Reconnection effects

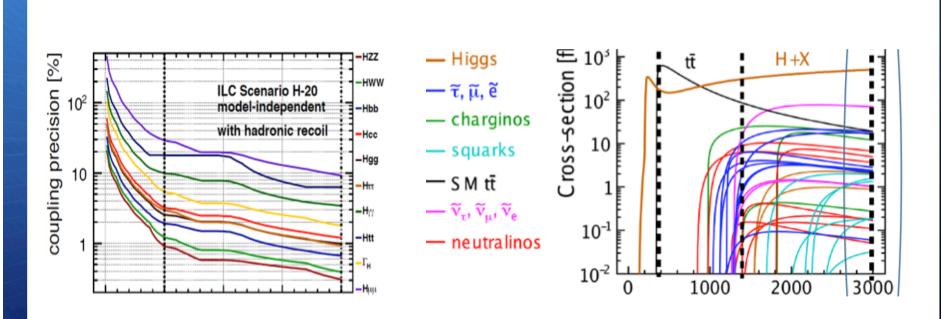
Nelli Pukhaeva JINR

NTiHEP Budva, 2018


Outlook

- + Future ee Colliders
- + Colour Reconnection effects
- + Results of study CR effects
- + New models of CR
- + CR at Future ee Colliders

Linear or Circular?


Linear: ILC, CLIC

Circular: FCC-ee, CERP

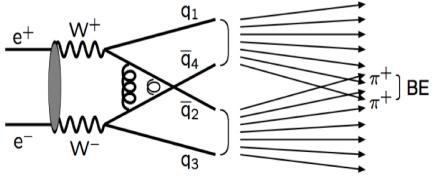
- + A clear advantage of a future circular ee mashines is absolute luminosity
- + While with linear colliders are achievable a higher center-of-mass energies due the absence of synchrotron radiation

ILC 250 GeV

CLIC

The **FCC-ee** - *Future Circular Collider* – will be a unique for searches new physics via high-precision studies of the W, Z, H bosons and top quark with uncertainties at the permil level or below, with huge luminosities (1-100) ab^1 with 4 interaction points, beam energy 90-350 GeV

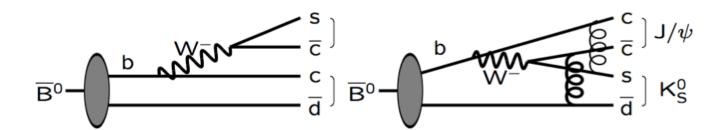
10⁸ jets from Z and W bosons decays 10⁵ gluon jets from Higgs boson decays


FCC-ee

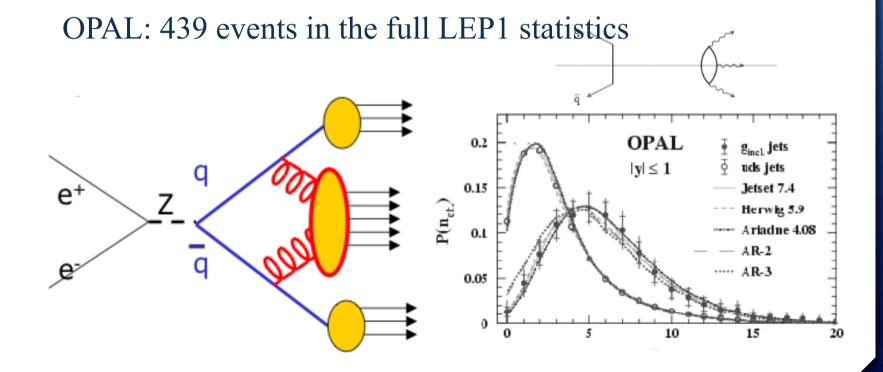
LHC

\sqrt{s} (GeV):	90 (Z)	125 (eeH)	160 (WW)	240 (HZ)	$350~(t\overline{t})$	$350~(WW{\rightarrow}H)$
\mathscr{L}/I	$P (cm^{-2} s^{-1})$	$2.2 \cdot 10^{36}$	$1.1 \cdot 10^{36}$	$3.8 \cdot 10^{35}$	$8.7 \cdot 10^{34}$	$2.1 \cdot 10^{34}$	$2.1 \cdot 10^{34}$
$\mathscr{L}_{\mathrm{int}}$	$(ab^{-1}/yr/IP)$	22	11	3.8	0.87	0.21	0.21
Ever	nts/year (4 IPs)	$3.7 \cdot 10^{12}$	$1.2 \cdot 10^4$	$6.1 \cdot 10^{7}$	$7.0 \cdot 10^5$	$4.2 \cdot 10^5$	$2.5 \cdot 10^4$
Year	s needed (4 IPs)	2.5	1.5	1	3	0.5	3

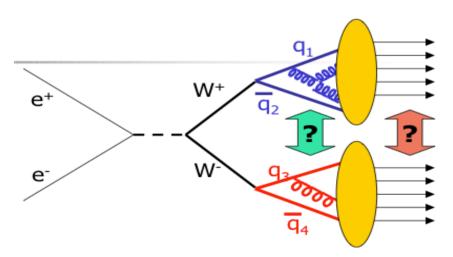
Colour reconnection effects


- + Color reconnection is an *ad hoc* mechanism aiming to describe the interactions that can occur between chromoelectric fields during the hadronization transition.
- + CR: top quark, Z, W bosons have widths around 2 GeV and $c\tau$ = 0.1GeV which is smaller than the hadronization times
- + which means inside all the hadronization colour fields, in the evolution of the parton shower, between partons from different hadronic systems by exchanging coloured gluons.

Reconnection exists


 $B \to J/\psi \to \mu^+\mu^-$ good way to find B mesons: H. Fritzsch, Phys. Lett. **B86** (1979) 164, 343

 $g^* \to c \overline{c} \to J/\psi$ production mechanism in pp ("colour octet") H. Fritzsch, Phys. Lett. **B67** (1977) 217

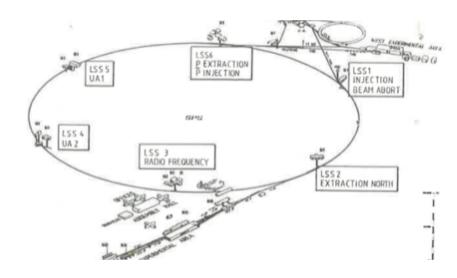

Looking on LEP1 data

Z->qqgg form a "glue ring" (Friberg et al. 97)

CR effects in WW events

- + In the absence of colour reconnection, from the fragmentation of two colour singlet strings each of which is stretched between the two quarks from a W boson.
- + However, interactions may occur between the decay products of the two W bosons.
- + This "cross-talk" is due relatively short distance separating the decay of the W bosons (in order of 0.1 fm)

The W boson


+ Discovered in UA1 and UA2 at CERN SpS in 1983

+ Charge : +-1e

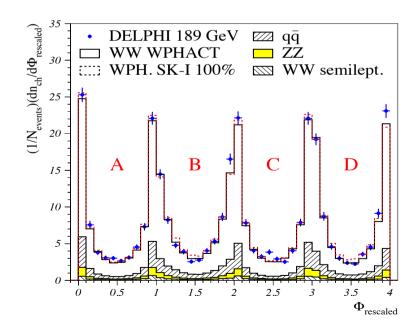
+ Width: 2.085+-0.042 GeV

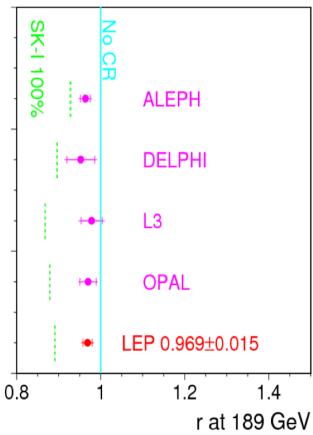
+ Spin : 1

+ Mass: 80.385 +-0.015 GeV

+ Decay Channels: e, mu, tau BR ~ 11% each

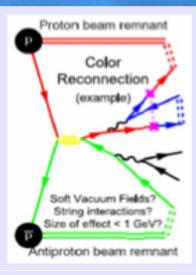
hadrons : BR $\sim 67\%$


Systematics of WW at LEP2


Source	qqlv	pppp	combined	
Hadronisation	13	19	14	
QED(ISR/FSR)	8	5	7	
Detector	10	8	10	
Colour Reconnection	О	35	9	
Bose-Einstein Correlation	n o	7	2	
LEP Beam Energy	9	9	10	
Other	3	11	4	
Total Systematics	21	44	22	
Statistical	30	40	25	
Total	36	59	33	

The conclusion of the LEP2

+ Best LEP2 fit (topology + mass): 51% of 189 GeV events reconnected in SKI model.


+ No-CR excluded at 99.5% CL

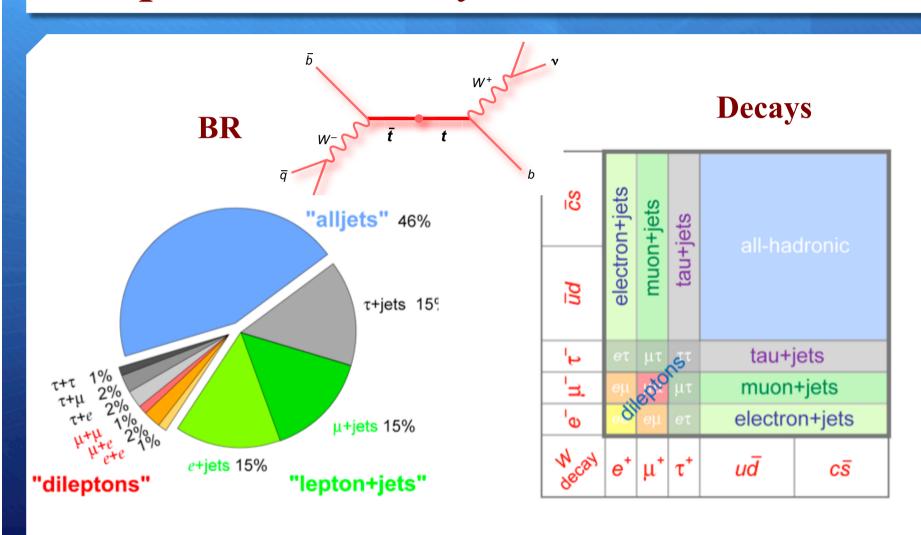
Tevatron results

+ Study withthe Perugiao tune, which gives 1.3 GeV

to the top mass systematics of order

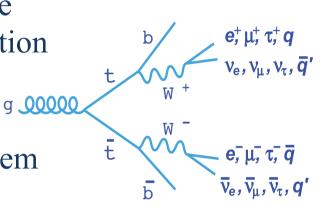
CR(sys)≈ 0.5 GeV

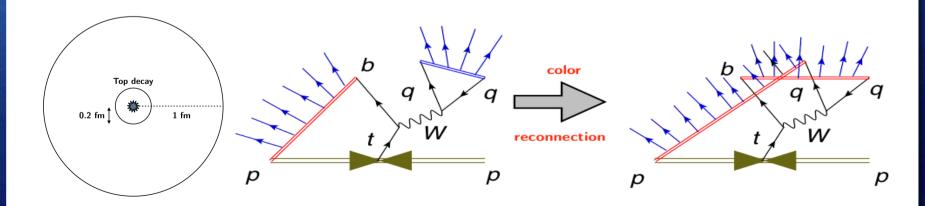
generator : $\Delta(m_{\downarrow}) = 0.25 \text{ GeV}$ (HERWIG-PYTHIA)

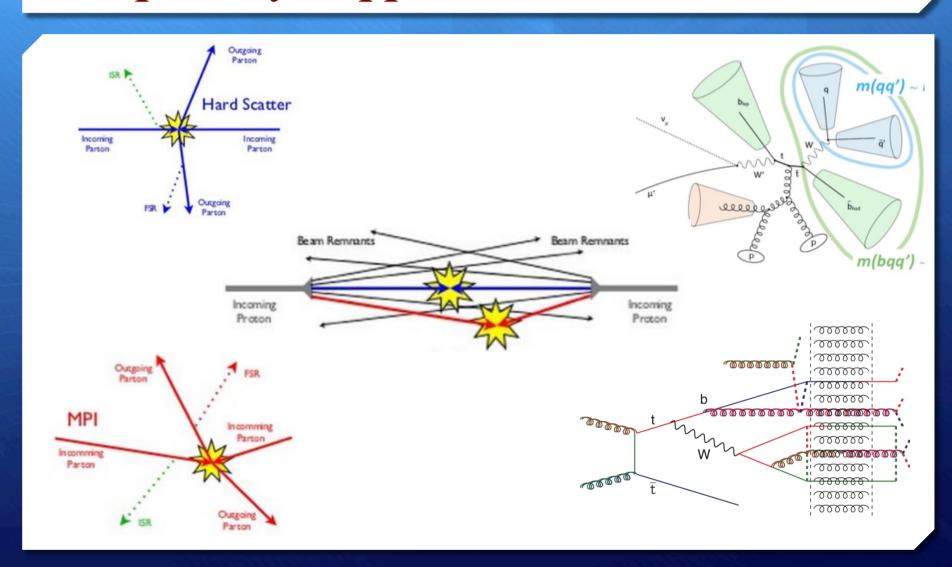

ISR/FSR : $\Delta(m_i) = 0.15 \text{ GeV}$

Jets (OOC+JES): $\Delta(m_{t}) = 0.43 \text{ GeV}$

b-jets : $\Delta(m_{\downarrow}) = 0.16 \text{ GeV}$


Color reconnection: $\Delta(m_t) = 0.37 \text{ GeV}$


Top BR and Decays


CR at Top decays

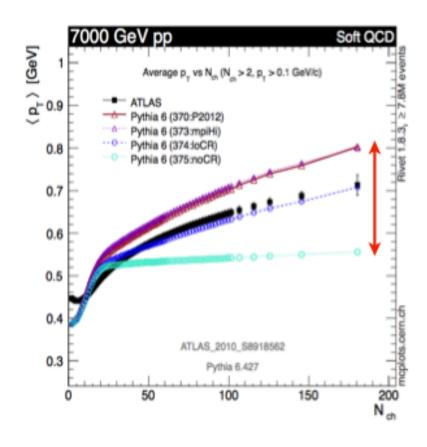
- Interactions and interference between the top decay products during the hadronization
- Important effect for the top mass measurements
- CR affects the reconstruction of top system

Top decay in pp events

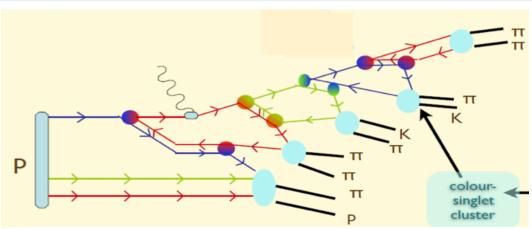
Atlas results:

Model with "no-CR" - unphysical

New (toy models)


- forced random
- forced nearest
- forced farthest
- forced smallest $\Delta \lambda$
- smallest Δλ

only top events default CR afterburner


New (more sophisticated)

- swap
- move
- swap + flip
- move + flip

all events

Colour reconnection pp

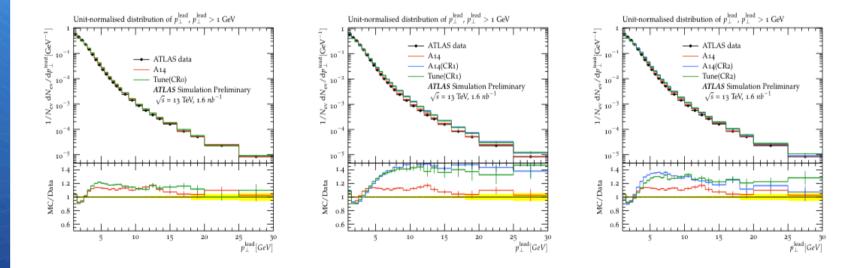
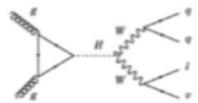
sub-leading color effects in the perturbative part of the calculation

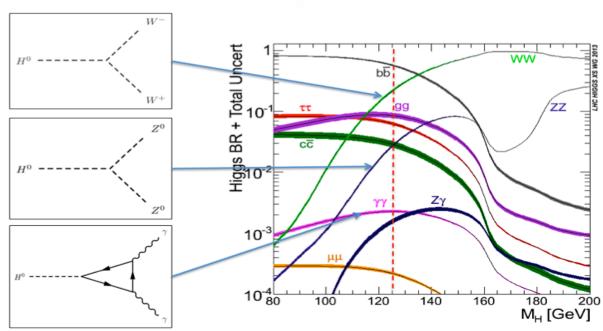
Interaction between colour fields during the hadronization

Parameter	Definition		
MPI Parameters			
MultipartonInteractions:pT0Ref	$p_{\rm T}$ regularisation parameter		
MultipartonInteractions:expPow	Exponent of matter overlap function		
MPI based CR model (CR0)			
ColourReconnection:range	CR strength		
QCD-based model (CR1)			
ColourReconnection:m0	Mass parameter of order λ_{QCD} used in the string length measure		
ColourReconnection:junctionCorrection	Multiplicative correction to string length above		
Gluon-move scheme (CR2)			
ColourReconnection:m2Lambda	Equivalent to m0 for QCD-based model		
ColourReconnection: fracGluon	Average fraction of gluons that undergo a colour reconnection		
ColourReconnection:dLambdaCut	Minimal value for decrease in string length		

Table 1: Tuning parameters and their definitions. The MultipartonInteractions:expPow can only be used with an exponential MPI matter overlap function (MultipartonInteractions:bProfile = 3). The parameters specific to a CR model are stated together. CR1 model was used was used with ColourReconnection:allowDoubleJunRem = off setting, as recommended by the authors.

Atlas study of CR

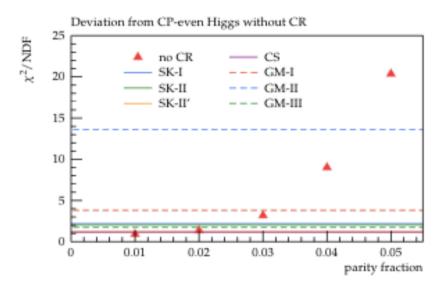




Figure 4: Predictions using the A14 tuned parameter settings (red), A14 tuned parameter settings with only CR model changed (blue), and a new set of tuned parameters with the new CR model (green) for CR0, CR1 and CR2 settings (left to right) are compared with leading charged particle $p_{\rm T}$ distribution with ATLAS data from Run 2 [7]. The yellow shaded areas at the ratio plot in the bottom represent the uncertainty on the data.

Higgs decays

BR H->WW 21%

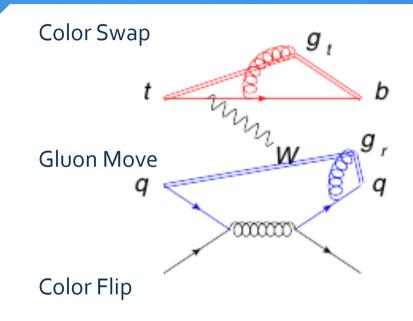
Simulation of high-energy physics process



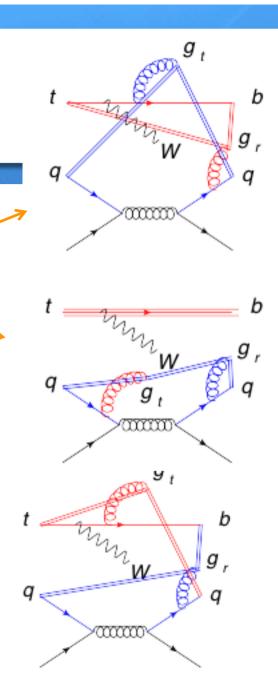
CR in H->WW

- + CR includes the big uncertainty
- + CR can shift jet directions necessary CR well understood
- + Results of Higgs Parity measurement

in WW->qqqq

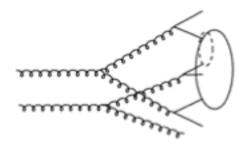


CR models


The CR effects were search firstly at LEP2 in ee->WW->qqqq events, a number of models were developed:

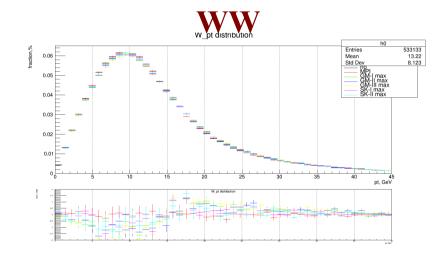
- + main in the PYTHIA SKI, SKII
- + in HERWIG Plain CR considers all quark ends of clusters and reconnects clusters probability p_reco and Statistical CR
- + for HERA new models in terms of CR from the Uppsala group which described DIS and rapidity gaps
- + MPI multiparton intersction model in PYTHIA for hadronic collisions, which explain the increasing transverse momentum p_t with increasing charged multiplicity n_ch
- + "gluon move" model GM in PYTHIA 8
- + a new QCD-based CR model CS Y-shaped topology
- + Rope Hadronization model with effects on flavour composition, can explain QGP-like features in systems as small as pp

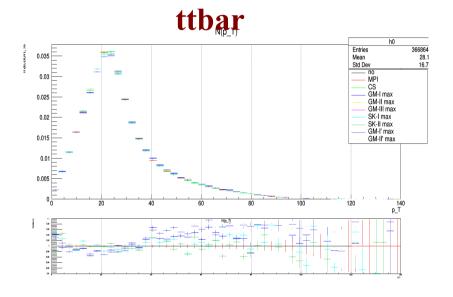
How looks CR models:


Model	$\Delta m_{top}^{rescaled}$ [GeV]		
default	+0.239		
forced random (min)	-0.524		
move	+0.239		
swap (max)	+0.273		

CR in models

+ Herwig:


- + based on space-time structure of event at the end of parton shower
- + perform a reconnection (ij)(kl) ->(ik)(jl)
- + accept with probability 1/9


+ Sherpa:

- + Model 1: reconnections that minimize "color length"
- + Model 2: random assignment of parton into color singlets

Results of simulations - Pythia8

SKI dMw = 24 MeV, dN_ch = 0.6 SKII dMw = 6 MeV dN_ch = 0.2 CS dMw = 6 MeV dN_ch = 0.5 GMI dMw = 31 MeV dN_ch = 1.2 GMII dMw = 41 MeV dN_ch = 0.5 GMIII dMw = 43 MeV dN_ch = 2.0

SKI dMtop = -160 MeV, dN_ch = 0.2 SKII dMtop = 20 MeV dN_ch = 0.1 CS dMtop = -30 MeV dN_ch = 0.9 GMI dMtop = 100 MeV dN_ch = 2.3 GMII dMtop = 200 MeV dN_ch = 0.4 GMIII dMtop = 180 MeV dN_ch = 3.1

CR at FCC-ee

- + The CR issues will reappear at FCC-ee for W boson mass
- + top quark study
- + The CR understanding is interesting itself
- + In SM M(H)=125GeV is a pure CP-even state, but in can be an CP-odd admixture, then it is important to set stringent limits
- + Possible to study angular correlations in H->WW->qqqq decays CR can shift jet directions necessary CR well understood

$E_{\rm cm}$	$\langle \delta \overline{m}_{W} \rangle \text{ (MeV)}$							
(GeV)	I	II	Π'	GM-I	GM-II	GM-III	CS	
170	+18	-14	-6	-41	+49	+2	+7	
240	+95	+29	+25	-74	+400	+104	+9	
350	+72	+18	+16	-50	+369	+60	+4	

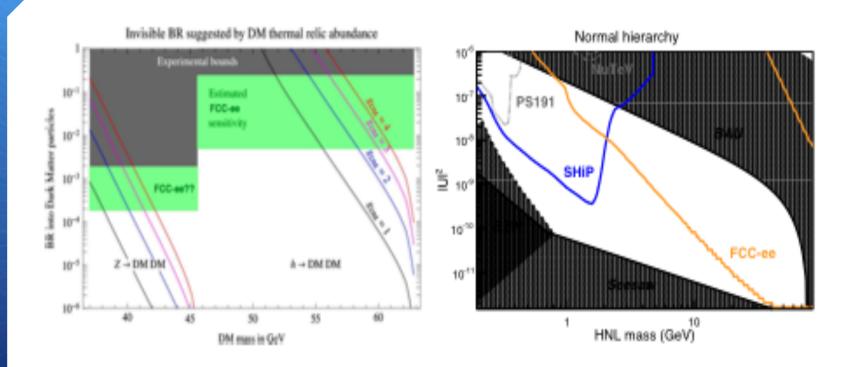


Figure 5: Regions of FCC-ee sensitivity for: (i) Rare Z and H decays into DM pairs in the BR_{Z,H→DMDM} vs. m_{DM} plane (left) [21], and (ii) sterile neutrinos as a function of their mass and mixing to light neutrinos (normal hierarchy) for 10¹³ Z decays (right) [22].

Thanks for attentions