

Direct low-mass WIMP searches with HPGe Semiconductor Bolometers

S. Rozov on behalf of the EDELWEISS collaboration

NTIHEP 2018

How to detect

According to models of cosmological structure formation, the luminous matter of galaxies is gravitationally bound to a more massive halo of Dark Matter. It local density is 0.3 GeV/cm³. If Dark Matter indeed consist from WIMPs, its expect to recoil on the ordinary matter moving through Dark Matter halo (Solar System around Galactic Centre). A process that can be used for WIMP detection is the elastic scattering of WIMP off nuclei. The energy deposited in the detector during the WIMP elastic scattering can be measured.

What about cross section and WIMP's mass?

- Most general SUSY not very predictive
- CMSSM (M_{GUT}~10¹⁶ GeV, "benchmark" for LHC): more predictive
- 10⁻⁸ pb "Focus point" ~"easy" reach for Direct Searches

• Focus search on this region, but keep eyes open for alternative models

•Complementarity: LHC probes M_{WIMP} direct searches probe $\sigma_{\text{WIMP-nucleon}}$

In anyway the expected signal rate for direct search is small !!!

 Main experimental challenges are: event rate is ultra small (below of 1 per 100 kg of matter per day); energy deposition is tiny (below of 100 keV)

Thus main tasks for experiments are:

- Detector mass + long stable data taking + stable predictable detector response
- <u>Detectors' performance (low energy thresholds, good resolutions)</u>
- Background reduction

Edelweiss: direct DM search @ LSM (France)

Edelweiss-III: experimental set-up

Cryogenic installation (18 mK) :

- Reversed geometry cryostat
- Can host up to 40kg of detectors

Shielding :

- Clean room + deradonized air: 10Bq/m³ → 30mBq/m³
- Active muon veto (>98% coverage)
- PE shield internal + external (50cm)
- Lead shield 20 cm (18cm + 2cm ancient lead)

(Many) others :

- Remotely controlled sources for calibrations + regenerations
- Radon detector down to few mBq/m³
- thermal neutron monitoring (3He det.)

Upgrades for EDW-III:

New cryogenics (microphonics), Additional PE shield, new Cu thermal screens, Kapton cables and connectors (α -n reduction), ALL cold electronics at 100K, digitization at 300K, New event-based scalable IPE-DAQ, ...

Edelwerss EDELWEISS-III: experimental setup

Performance of the EDELWEISS-III experiment for direct dark matter searches arXiv:1706.01070

Cryogenic installation (18 mK):

- Reversed geometry cryostat
- > Towers of 24 cryogenic detectors
- > Can host up to 40 kg of detectors

Shieldings:

- > Clean room + deradonized air (30 mBq/m³)
- > Active muon veto (> 98% coverage)
- > PE shielding internal + external (50cm)
- > **Pb** shielding **20 cm** (18 cm + 2 cm Roman lead)

Basis for EDELWEISS experiment is Heat and Ionization Ge detectors

Edelwers EDELWEISS-III: FID Ge-bolometers

Full InterDigitized (FID) detectors: 820-890 g, h = 40 mm, \emptyset = 70 mm

Simultaneous measurement of heat and ionization signals

Edelwerss EDELWEISS-III: FID Ge-bolometers

Full InterDigitized (FID) detectors: 820-890 g, h = 40 mm, \emptyset = 70 mm

Simultaneous measurement

- Heat @18 mK, 2 Ge/NTD thermometers
- Ionization @ few V/cm
- Evt by evt identification by ratio $Q=E_{ioniz}/E_{recoil}$ $\rightarrow \gamma$ -rejection factor <2.5×10⁻⁶

PLB 681 (2009) 305; JLTP (2014) 176:870 10

Edelwerss EDELWEISS-III: FID Ge-bolometers

Full InterDigitized (FID) detectors: 820-890 g, h = 40 mm, \emptyset = 70 mm

Simultaneous measurement

- Heat @18 mK, 2 Ge/NTD thermometers
- Ionization @ few V/cm

lonization yield (E_{ionization} / E_{recoil})

- Evt by evt identification by ratio $Q=E_{ioniz}/E_{recoil}$ $\rightarrow \gamma$ -rejection factor <2.5×10⁻⁶
- Vetoing surface events (ID electrodes) → surface-rejection factor 4×10⁻⁵

PLB 681 (2009) 305; JLTP (2014) 176:870 11

Low-Mass reach of EDELWEISS-III

- Analysis with Boosted Decision Tree [JCAP05 (2016) 019]
- Analysis with Profile Likelihood [EPJC 76 (2016) 548]

- Improvement by x20 to x150 between 7 and 10 GeV wrt EDELWEISS-II
- Limited by heat-only background: *identification* and rejection using the $\sigma=230 \text{ eV}$ resolution on ionization
- Ionization resolution is key for rejection
 - Heat resolution is key for low thresholds

Low-mass WIMP searches

EDELWEISS Low-mass WIMP searches

EDELWEISS-III

 Exploitation of results with 20 kg array

Ionization R&D

- Improving discrimination to explore the ⁸B region with resolution (DMB8)
- Exploring non-WIMP DM with smaller array (MELODI)

Heat channel R&D

- Improving the heat channel resolution to reach lower WIMP masses
- Above-ground R&D (Surf) and deployment at LSM (LT)

Prospective with improved ionization

- Cold front-end: replace JFET @100K with HEMT (High Electron Mobility Transistor) @4K
- Can be operated at 4K: shorter cabling -> reduced capacitance -> better signal/noise
- Successful HEMT amplifier with sub-100 eV resolution operated on a CDMS-II detector
 [A. Phipps et al., arXiv: 1611.09712]
 2 mm spacing → 4 mm spacing
- EDELWEISS electrode design with lower capacitance:
 2 → 4 mm spacing already achieved. Goal: reach 50 eV_{ee}.
 First applications with prototype detector: MELODI
- FID detector with <40 pF + <50 eV_{ee} ion. resolution
- Precision nuclear recoil ionization yield measurement

EDELWEISS-LT: Luke-Neganov boost

Prospects for GeV-range masses

Complete study based on present measured backgrounds and resolutions vs possible improvements [PRD 97 (2018) 022003]

Surface limit

- Achieved resolution on a smaller detector exceeds by x5 the original LT goal with 800 g detectors
- Best above-ground limit down to 600 MeV/c²: SIMP
- First sub-GeV limit with Ge, down to 500 MeV/c²
- Opens the way for the
 0.1 1 GeV/c² range
- Small detectors with lower thresholds to be combined with expertise acquired on HV: threshold reduction by factor (1+V_{bias}/3) in keV_{ee}

Conclusions

EDELWEISS-III

- Robust design, good reproducibility of performances
- Detailed description of backgrounds

[arXiv:1706.01070] [JINST 11 (2016) P10008]

[AstroPart. 91 (2017) 51]

- Excellent rejection performance, but not competitive with large Ar/Xe detectors above 6 GeV
 [JCAP05 (2016) 019] [EPJC 76 (2016) 548]
- Prospects in the GeV-WIMP range: EDELWEISS-LT [arXiv:1707.04308]
 - Improve thresholds x10 using boost from 8 to 100V (achieved)
 - 10⁻⁴¹ cm² achievable at LSM with 4 detectors with present levels of backgrounds
- Prospects for WIMPs in the ⁸B region: EDELWEISS-DMB8
 - 50 eV ionization resolution to obtain pure nuclear recoil sample + 10% resolution on recoil energy: clear spectral identification of ⁸B v [arXiv:1707.04308]
 - ~200 kg FIDs at SNOLAB to complement nicely the SuperCDMS-SNOLAB reach
 - Use HEMT preamplifier + reduce electrode capacitance (reduction by a factor of 2 of number of electrodes achieved) → MELODI @LSM

Low-mass WIMP searches

Shield / Neutrons / Active muon veto system

EDELWEISS (Heat and ionization Ge bolometers)

Using of Heat and Ionization HPGe detectors, running in ³He-⁴He dilution cryostat (<20 mK)

Ratio E_{ionization}/E_{recoil} is =1 for electronic recoil ≈0.3 for nuclear recoil ⇒Event by event identification of the recoil ⇒ Discrimination u/n > 00.000/

 \Rightarrow **Discrimination** γ /n > 99.99%

Detectors with special concentric planar electrodes for active rejection of surface events (misscollected charge)

EDELWEISS

- 36 x 800 g detectors
- 2 charge + 2 charge
- 2 phonon (NTD)

Edelwerss Active rejection performance of FID detectors

Performance of the EDELWEISS-III experiment for direct dark matter searches arXiv:1706.01070

Rejection tested with more than 5000 kg.d equivalent samples

Gamma rejection

 $R_{\gamma-mis-FID}$ < 2.5 x 10⁻⁶ (90% C.L.) → at least 12 x better than EDW-II

Surface-event rejection

R_{surf-FID} < 4 x 10⁻⁵ (90% C.L.)

for $^{210}\text{Pb}\text{+}^{210}\text{Bi}$ $\beta\text{,}$ ^{210}Po α and ^{206}Pb recoils

 \rightarrow < 1 surface event / 3400 kg.d fiducial exposure in the NRB band for a recoil energy threshold of 15 keV

Conclusions

• EDELWEISS-III : large detectors with rejection

- Excellent rejection performance, but not competitive with large Ar/Xe detectors above 6 GeV
- Exploitation of excellent surface event rejections from FID to get best Ge ALPs limits, and enter the sub-keV range
- EDELWEISS-MELODI : develop large detector with FID design
 - Exploring non-WIMP DM with prototype: ALPs in the 0.1-1 keV range, and direct sensitivity to quenching at \sim 0.4 keV_{NR}
 - Building block for a much larger search experiment (DMB8, suited for future SNOLAB program) addressing specifically the region where the DM signal needs to be spectrally resolved from a solar ⁸B neutrino signal
- Prospects in the sub-GeV-WIMP range: beyond EDELWEISS-LT
 - Going beyond original [PRD] goal: 100 eV → 18 eV (wrt ~500 eV edw3)
 - Best surface limit for WIMPs above 0.6 GeV/c²
 - Resolutions achieved on 32g detectors + expertise acquired in HV runs open the way for the 0.1-1 GeV range

FID800 detectors

Edelwerss EDELWEISS-III: FID Ge-bolometers

Full InterDigitized (FID) detectors: 820-890 g, h = 40 mm, \emptyset = 70 mm

Simultaneous measurement of heat and ionization signals

Fiducial events: collected by fiducial electrodes (B & D).

Surface events:

collected by one veto electrode (A or C) and its neighbour fiducial one (B or D).

- Heat @18 mK: measurement of phonon thermalization by 2 Ge/NTD (Neutron transmutation doped) thermal sensors (top and bottom) Δ T = 0.1 μ K/keV
- Ionization @few V/cm: charges collected by Al concentric electrodes (width = 150 μm, gap = 2 mm); XeF₂ surface treatment to ensure low leakage current (<1 fA) between adjacent electrodes;
 2 fiducial electrodes B/D (V_B = +4 V, V_D = -4 V) and 2 veto electrodes A/C (V_A = -1.5 V, V_C = +1.5 V)

+ Neganov-Luke effect: proportional to the number of charges and to the bias V

 Q(E_r) = ionization yield associated to recoil energy E_r normalized to 1 for electron recoils

Edelweiss-III: FID Ge-bolometers

Simultaneous measurement

- Heat @18 mK, 2 Ge/NTD thermometers
- Ionization @ few V/cm
- Evt by evt identification by ratio $Q=E_{ioniz}/E_{recoil}$ $\rightarrow \gamma$ -rejection factor <2.5×10⁻⁶

PLB 681 (2009) 305; JLTP (2014) 176:870

Go deep underground to search for most interesting part of the Universe

Go deep underground to search for most interesting part of the Universe

1228 m

Altitudes

Distances

FRANCE

ITALIE

m

1263

Depth: 4800 m.w.e Surface: 400 m² Volume: 3500 m³ Access: horizontal

Muons: 5x10⁻⁵ μ.m⁻².s⁻¹ Neutrons: ~5x10⁻² n.m⁻².s Radon: 15 Bq/m³

Edelwerss EDELWEISS-III likelihood analysis

Results from likelihood analysis

1.6 x 10⁻³⁹ cm² at 4 GeV/c² to 6.9 x 10⁻⁴⁴ cm² at 30 GeV/c²

Improvement by x20 to x150 between 7 and 10 GeV wrt EDW-II results due to higher signal efficiency and background subtraction

Improvement from **BDT to likelihood**:

```
\begin{array}{c} 1.1 \ x \ 10^{-38} \ cm^2 \rightarrow 1.6 \ x \ 10^{-39} \ cm^2 \\ at \ 4 \ GeV/c^2 \\ 3.34 \ x \ 10^{-42} \ cm^2 \rightarrow 1.66 \ x \ 10^{-42} \ cm^2 \\ at \ 8 \ GeV/c^2 \end{array}
```


Limitation due to heat-only event background: identification and rejection using the σ_{ion} = 230 eV_{ee}

- need to improve ionization resolution for rejection
- need to improve heat resolution to lower thresholds

EDELWEISS Setup

• Clean room + deradonized air

Rn monitoring down to few mBq/m³

- Active muon veto (>98% coverage)
- External (50 cm) + internal polyethylene shielding Thermal neutron monitoring with ³He detector
- Lead shielding (20 cm, incl. 2 cm Roman lead)
- Selection of radiopure material
- Cryostat can host up to 40 kg detector, at 18 mK

Performance of the EDELWEISS-III experiment for direct dark matter searches

[JINST 12 (2017) P08010]

90%CL limit on WIMP signals

 Find maximal WIMP rate compatible with total number of counts observed in the pre-defined windows

