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Introduction

“My own visions of CLIC”, artwork by Vilma Heiskaner, 2010



CLIC accelerator
● CLIC = Compact Linear Collider
● High-luminosity linear e+e- collider
● Centre-of-mass energy from few 

hundred GeV up to 3 TeV
● CLIC would be implemented in several 

energy stages (7-8 years each)
● NEW baseline scenario:

+ 80% polarization of the e- beam

● Physics goals:

→ Precision measurement of SM processes

→ Precision measurement of new physics 

(discovered at LHC or CLIC)

→ Search for BSM

Stage Centre-of-mass en. L
int

 (fb-1)

1 380 GeV (and 350) 1000

2 1.5 TeV 2500

3 3 TeV 5000

Possibility to adapt the stages 
to new LHC discovery!
Possibility to adapt the stages 
to new LHC discovery!Erica Brondolin 4



CLIC collaborations
CLIC accelerator collaboration 

~70 institutes from ~30 countries

CLIC accelerator studies:
● CLIC accelerator design and development
● Construction and operation of CTF3

CLIC detector and physics (CLICdp)

~30 institutes from 18 countries

Focus of CLIC-specific studies on:
● Physics prospects and simulation studies
● Detector optimization + R&D for CLIC

http://clic.cern
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“My own visions of CLIC”, artwork by Alexander Duncan, 2010

CLIC accelerator



CLIC layout at 3 TeV

+/-80% polarised unpolarisedErica Brondolin 7

Drive beam

Main beam



CLIC layout at 3 TeV

+/-80% polarised unpolarisedErica Brondolin 8

Main beam



CLIC layout at 3 TeV
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Drive beam

High centre-of-mass energy requires high-gradient acceleration

→ CLIC uses a Two-beam acceleration scheme at 12 GHz, gradient of 100 MV/m



CLIC layout at 3 TeV

→ Drive beam: 12 GHz bunch structure, high current (100 A), 

low energy (2.4 GeV -240 MeV), klystron acceleration

→ Main beam for physics: lower current (1.2 A), high energy 

(9 GeV-1.5 TeV), accelerated by the RF cavities powered by 

the deceleration of the drive beam in special RF structures 

(PETS)
● Two beam technique demonstrated at CERN, CLIC CTF3 

test facility
Erica Brondolin 10

Drive beam

RF power source using “Two-beam technique”

Main beam



Two-beam setup

drive beam

main beamTwo-beam acceleration module in CTF3
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Beam-induced backgrounds
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CLIC achieves high luminosities by using extremely small beam sizes

→ 3 TeV CLIC bunch size: σ
x,y,z

 = {40 nm, 1 nm, 44 μm} 

(at LHC σ
T,z

 = {16.7 μm, 7.55 cm}) 

→ very high EM-fields→ beam-beam interactions

Main backgrounds:
● Incoherent e+e- pairs 

→ High occupancy

→ Mostly in the forward region 

→ Impact on detector granularity and design 
● γγ → hadrons

→ High energy deposits 

→ Impact on detector granularity, design 

and physics measurement

Detector acceptance starts at 10 mrad

Effect is dependent on √s

→ Background particles

→ Reduces √s



Beam at CLIC
Luminosity spectrum

● Due to beamstrahlung, important energy 

losses right at the interaction point
● Collision energy is reduced by the amount 

lost in beamstrahlung before collision

● Luminosity spectrum can be measured in 

situ using large-angle Bhabha scattering 

events, to 5% accuracy at 3 TeV

Bunch separation

● Bunch separation and background 

suppression drives timing requirement of 

detector:

< 10 ns hit time-stamping in tracking

< 1 ns accuracy for calorimeter hits

● Low duty cycle:

Possibility of power pulsing of detectors
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“My own visions of CLIC”, artwork by Lukas Molketin, 2010

CLIC detector



CLIC detector concept
Designed for Particle Flow Analysis (PFA) and optimised for CLIC environment

More details in: CLICdp-Note-2017-001

12.8 m

11.4 m
Vertex detector
- 3 double layers with 25 × 25 µm2 pixels
- Extremely accurate (σ < 3 µm) and light (< 0.2 % X

0
 per layer)

Return yoke & muon chambers
- Used mainly for muon ID

End coils

Silicon Tracker
- Tracker composed of large pixels/strips
- Outer R ~ 1.5 m
- < 10 ns hit time-stamping in tracking

Superconducting solenoid with 4T magnetic field

Fine grained calorimeters
Si-W ECAL
- 40 layers → 22 X

0
 and 1 λ

I

- 5 × 5 mm2 silicon cell size (  2500 m∼ 2)
- < 1 ns accuracy for calorimeter hits
Scint-Fe HCAL
- 60 layers → 7.5 λ

I

- 30 × 30 mm2 scintillator cell size (  9000 m∼ 2)
- < 1 ns accuracy for calorimeter hits

Forward calorimeters
- very forward electron tagging and luminosity measurements
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Example: Tracker radius and 

B-Field ↔ momentum resolution

Full det simulation and optimization
● Full Geant4 detector simulation including overlay of beam-induced backgrounds
● Full reconstruction chain including: 

reconstruction of tracks and clusters → particle flow objects → jets → flavor tagging
● Optimization of CLIC detector model in full detector simulations

→ Ensure that detector performance meets requirements

Example: e+e- → tt @ 3 TeV
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Beam-induced background rejection
Beam-induced background from γγ → hadrons can be 

efficiently suppressed by applying pt vs. time selections 

on individually reconstructed particles
● Identify time of physics event in the full bunch train
● Cluster time obtained by combining sub-detectors hit timing 

information and correct for time-of-flight
● Accept reconstructed particles depending on 

particle type, cluster time, and pT

● Selection cuts reduce background from 1.2 TeV to 100 GeV @ 3 TeV!

Before the pt vs. time selections After the pt vs. time selections

Example: e+e− → ttH → Wb Wb H → qqb τνb bb at 1.4 TeVErica Brondolin 17



Detector requirements & performance
Momentum resolution

(e.g. H → μ+μ−, leptons from BSM processes)

above 100 GeV

Energy resolution for light-quark jets

(e.g. W/Z/h di-jet mass separation)

for E = 1 TeV – 50 GeV 

Impact parameter resolution

(e.g. b/c tagging, Higgs couplings)

Lepton identification efficiency > 95 %

Very forward electron tagging

Erica Brondolin 18



Detector requirements & performance
Momentum resolution

(e.g. H → μ+μ−, leptons from BSM processes)

above 100 GeV

Energy resolution for light-quark jets

(e.g. W/Z/h di-jet mass separation)

for E = 1 TeV – 50 GeV 

Impact parameter resolution

(e.g. b/c tagging, Higgs couplings)

Lepton identification efficiency > 95 %

Very forward electron tagging

5%

3.5%
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Detector requirements & performance
Momentum resolution

(e.g. H → μ+μ−, leptons from BSM processes)

above 100 GeV

Energy resolution for light-quark jets

(e.g. W/Z/h di-jet mass separation)

for E = 1 TeV – 50 GeV 

Impact parameter resolution

(e.g. b/c tagging, Higgs couplings)

Lepton identification efficiency > 95 %

Very forward electron tagging
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“My own visions of CLIC”, artwork by Sean Steed, 2010

Physics potential



Main physics topics

● Higgs boson
● Top quark
● BSM (direct and indirect)

H → Zγ → qqγ @ 1.4 TeV-

● What can we learn by studying the Higgs boson and the top quark in collisions?
● Which precision measurements can hint to new physics at very high scales?
● Can CLIC make direct observations although the LHC has found nothing so far?

All results are produced with new

scenario, if not indicated otherwise

Erica Brondolin 22

Stage Centre-of-mass en. L
int

 (fb-1)

1 380 GeV (and 350) 1000

2 1.5 TeV 2500

3 3 TeV 5000



Higgs physics at CLIC
All Higgs studies summarised in the following 

paper: Eur. Phys. J. C 77 (2017) 475
● Higgsstrahlung: e+e- → ZH

→ σ ~ 1/s, dominant up to ~ 450 GeV

→ Higgs identification from recoil

● WW fusion: e+e- → Hν
e
ν

e

→ σ ~ log(s), dominant above ~ 450 GeV

→ Large statistics at high energy

● e+e- → HHν
e
ν

e

→ Allow simultaneous extraction of triple Higgs 

coupling, λ, and HHWW quadratic coupling

→ Benefits from high-energy operation

→ Rarer decays more available at higher 

energy
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Selected Higgs analysis

● Old staging scenario
● H → bb requires good flavour tagging 

and jet energy resolution
● H → µ+µ- visible thanks to excellent 

momentum resolution

● NEW staging scenario
● Small cross-section of double Higgs 

production requires highest energy and 

large luminosities
● HHν

e
ν

e
 scales by 1.8 (0.2) for -80% 

(+80%) e− polarisation
● With updated running scenario, combining 

1.5 TeV and 3 TeV

→ ∆g
HHH

/g
HHH

 ≈ 10% reachable

●  Small cross-section and high background
● rates, complex final states

H → bb H → µ+µ-

e+e- → HHν
e
ν

e

Erica Brondolin 24



Higgs physics at CLIC
Fully model-independent analysis:
Free parameters Γ

H
 and ten Higgs couplings

No assumption on invisible Higgs decays 

High precision measurements:
- Couplings with sub-1% level (at 1% for rare decays)
- The Higgs width is extracted with 4.7 – 2.5% precision

- All results limited by 0.6% from σ(HZ) measurement

Erica Brondolin 25



Higgs physics at CLIC
Fully model-independent analysis:
Free parameters Γ

H
 and ten Higgs couplings

No assumption on invisible Higgs decays 

Model-dependent analysis:
Γ

H
 constrained by the SM expectations

No invisible Higgs decays

High precision measurements:
- Already the first CLIC stage significantly better than HL-LHC
for several couplings
- The full program enhances the precision further
- μμ, γγ and Zγ would benefit from HL-LHC + CLIC combination

Erica Brondolin 26



Top-quark physics at CLIC
All Higgs studies summarised in the following paper (using 

old staging scenario): https://arxiv.org/abs/1807.02441

Studies at different stages:
● 350 GeV and 380 GeV:

- e+e- → tt: Production threshold at √s ~ 2m
top

Large event sample at 380 GeV

- Threshold scan around 350 GeV

- Top-quark mass from radiative events or direct 

reconstruction of the top quark

- Flavour-changing neutral current top-quark decays
● 1.4 TeV and 3 TeV:

- e+e- → ttH: Maximum near 800 GeV

- e+e- → ttν
e
ν

e
 (Vector Boson Fusion): 

Benefits from highest energies

- Vector boson fusion production of top pairs

- Top Yukawa coupling
● Kinematic studies of top-pair production at all stages

e+e- → tt → 6 jets @ 380 GeV

Erica Brondolin 27
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Top threshold scan @ 350 GeV
● Well-defined 1S top mass can be measured
● σ

e+e- → tt
 around threshold is sensitive to 1s top-quark mass, width and other model parameters

● Energy scan: 10 points with 10 fb−1 from 340 GeV to 349 GeV
● Expected uncertainty on the top-mass σ

mtop
 ≈ 50 MeV (dominated by theoretical uncertainties)

● Precision at the HL-LHC limited to several hundred MeV

→ Dedicated luminosity 

spectra (low bunch charge) 

also reduces uncertainties on 

the extracted top-quark width 

and Yukawa coupling

top-quark width Yukawa coupling

Erica Brondolin 28



Top-quark coupling to Z and γ
● Top quark pairs are produced via Z/γ

→ New physics would modify the ttV vertex
● At a linear collider the γ and Z form factors can be 

disentangled using beam polarization  by measuring:

→ production cross section

→ forward-backward asymmetry

→ helicity angle distribution (in leptonic decays)

Erica Brondolin 29

● Expected precision at HL-LHC, ILC (500 GeV) 

and CLIC (380 GeV / 3 TeV)

● ILC: e- and e+ polarized (80% / 30%)
● CLIC: e- polarized (80%)

● Already the first CLIC stage significantly better 

than HL-LHC
● Result obtained with old staging scenario



Beyond Standard Model at CLIC
● CLIC operating at high energy provides 

significant discovery potential for BSM 

physics → Comprehensive BSM report 

under work
● Direct searches of new particles:

→ Direct searches can find particles up to 

1.5 TeV

→ Possible observation of the new 

phenomena thanks to the low background 

(no QCD)

→ Precision measurements of new particle 

properties (also for the ones discovered in 

(HL-)LHC )
● Indirect searches of new physics:

→ Precision measurements of sensitive 

observables reveal a signs of new physics, 

comparing to the SM expectations

→ The reach is higher – several tens of TeV

Erica Brondolin 30



Beyond Standard Model at CLIC
Example of indirect measurement: 

● Observables:

→ Total e+e- → μ+μ- cross section

→ Forward-backward asymmetry

→ Left-right asymmetry (with ±80% e- polarisation)

● If LHC discovers Z’ (e.g. for MZ’=5 TeV)

→ CLIC precision measurement of effective couplings

otherwise:

→ CLIC discovery reach up to tens of TeV (depending on the couplings)

More details in: arXiv:1208.1148

Z’
CLICdp

Z’ → μ+μ-

Erica Brondolin 31
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Conclusions

“My own visions of CLIC”, collage by Erica Brondolin, 2018



Summary
● CLIC is e+e− collider from a few hundred GeV up to 3 TeV
● CLIC is a mature international project
● The  accelerator technical challenges have been solved
● CLIC environment and physics goals lead to challenging requirements for

→ detector: Strong R&D programme on ultra-light vertex and tracking detectors & 

fine-grained calorimeters

→ software: Full detector simulation and reconstruction already in place, which allows 

not only detailed analysis but also studies for detector optimization 
● CLIC is a precision machine with a unique physics potential

Energy-staging → optimal for physics:

380 GeV: Optimised for high precision measurements of Higgs boson 

and top quark 

1.5, 3 TeV: Best sensitivity for BSM searches,

rare Higgs processes and decays

→ High physics potential already at the first stage, possible start from 2035

● A statement about CLIC as a future option for CERN is expected from the 2019-

2020 update to European Strategy of Particle Physics → stay tuned! 
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Thank you for the attention!



Bibliography and sources
● CLIC Conceptual Design Report:

http://clicdp.web.cern.ch/content/conceptual-design-report
● CLIC accelerator and artworks:

http://clic-study.web.cern.ch
● CLICdet: The post-CDR CLIC detector model:

https://cds.cern.ch/record/2254048
● Higgs physics at the CLIC electron–positron linear collider: 

https://arxiv.org/abs/1608.07538
● Projections for measurements of Higgs boson signal strengths and coupling 

parameters with the ATLAS detector at a HL-LHC: 

https://cds.cern.ch/record/1956710
● Top-Quark Physics at the CLIC Electron-Positron Linear Collider:

https://arxiv.org/abs/1807.02441
● Physics performances for Z' searches at 3 TeV and 1.5 TeV CLIC:

https://arxiv.org/abs/1208.1148
● Academic Training Lecture about CLIC:

https://indico.cern.ch/event/668147/
● Luminosity spectrum reconstruction at linear colliders:

Eur.Phys.J. C74 (2014) no.4, 2833

Erica Brondolin 35

http://clicdp.web.cern.ch/content/conceptual-design-report
http://clic-study.web.cern.ch/
https://cds.cern.ch/record/2254048
https://arxiv.org/abs/1608.07538
https://cds.cern.ch/record/1956710
https://arxiv.org/abs/1807.02441
https://arxiv.org/abs/1208.1148
https://indico.cern.ch/event/668147/
http://link.springer.com/article/10.1140/epjc/s10052-014-2833-3


CLIC timeline
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Old/new stage scenarios
● NEW baseline scenario:

+ 80% polarization of the e- beam
● 1 year = 1.2 x 107 seconds 
● 27 years
● OLD baseline scenario:

+ no polarization of the beam assumed 

as baseline
● 1 year = 1.2 x 107 seconds
● 22 years 

Stage Centre-of-mass en. L
int

 (fb-1)

1 380 GeV (and 350) 1000

2 1.5 TeV 2500

3 3 TeV 5000

Erica Brondolin 37

Stage Centre-of-mass en. L
int

 (fb-1)

1 380 GeV
350 GeV

500
100

2 1.5 TeV 1500

3 3 TeV 3000



Old/new stage scenarios
● NEW baseline scenario:

+ 80% polarization of the e- beam
● 1 year = 1.2 x 107 seconds 
● 27 years
● OLD baseline scenario:

+ no polarization of the beam assumed 

as baseline
● 1 year = 1.2 x 107 seconds
● 22 years 

Stage Centre-of-mass en. L
int

 (fb-1)

1 380 GeV (and 350) 1000

2 1.5 TeV 2500

3 3 TeV 5000
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Stage Centre-of-mass en. L
int

 (fb-1)

1 380 GeV
350 GeV

500
100

2 1.5 TeV 1500

3 3 TeV 3000



Impact of polarization
● Polarization in NEW scenario:

- 380 GeV: 0.5 ab-1 with -80% and 0.5 ab-1 with +80%

- 1.4 TeV: 2 ab-1 with -80% and 0.5 ab-1 with +80%

- 3 TeV: 4 ab-1 with -80% and 1 ab-1 with +80%
● Higgsstrahlung at first stage: precision almost independent of electron beam polarisation
● Hν

e
ν

e
 and HHν

e
ν

e
: cross section scales by 1.8 (0.2) for -80% (+80%) electron beam 

polarisation

→ The Higgs program prefers the -80% configuration at high energy 

(equivalent to reduction of run time due)
● The BSM sensitivity of two fermion production: benefits from some fraction with +80%, 

examples: 

1) e+e−→ tt (less than 50% with +80% acceptable)

2) Z’ from e+e- → μ+μ− (systematics limited already with 1 ab−1)

→ Also at high energy some faction of data with +80% is desired
● Collecting 80% (70%) of the luminosity with -80% electron beam polarisation at high 

energy corresponds to 48% (32%) more run time for double Higgs production and rare 

decays
● If new physics is discovered: polarisation might be useful to constrain the underlying 

theory
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CLIC costs and power
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● Ongoing: detailed bottom-up estimate of cost and 

power
● Current estimate: O(6 GCHF) for 380 GeV stage, 

power O(200 MW)
● Considerable savings compared to CERN-2016-

004 identified (2016 numbers were extrapolated 

from 500 GeV CLIC (CDR 2012) - 6.7 GCHF)

Civil Engineering and Services

Two-beam accelerators

Drive beam production

Main beam production

Accelerator control & op. infrastructure

Interaction region (w/o detector)



CLIC accelerating structures
Achieved 100 MV/m gradient in main-beam RF cavities

● R&D around the world
● Feasibility study using Break Down 

Rate (BDR)
● Shorter pulses allow higher gradient

Erica Brondolin 43



R&D in CLICdp (examples)
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Vertex & Tracker

Calorimetry

hybrid

monolithic



Beam at CLIC
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Luminosity spectrum

● Due to beamstrahlung, important energy 

losses right at the interaction point
● Collision energy is reduced by the amount 

lost in beamstrahlung before collision
● Most physics processes are studied well 

above production threshold

→ Can profit from almost full luminosity

● Luminosity spectrum can be measured in 

situ using large-angle Bhabha scattering 

events, to 5% accuracy at 3 TeV

Fraction √s’/√s 380 GeV 3 TeV

> 0.99 63% 36%

> 0.9 91% 57%

> 0.8 98% 69%

> 0.7 99.5% 77%

> 0.5 ≈100% 89%

Bunch separation

● Bunch separation drives timing 

requirement of detector:

< 10 ns hit time-stamping in tracking

< 1 ns accuracy for calorimeter hits
● Low duty cycle:

Possibility of power pulsing of detectors

● Luminosity spectrum can be measured in 

situ using large-angle Bhabha scattering 

events, to 5% accuracy at 3 TeV

Property
√s 380 GeV 1.5/3 TeV

Train repetition rate 50 Hz 50 Hz

Bunches / train 356 312

Train duration 178 ns 156 ns

Bunch separation 0.5 ns 0.5 ns

Duty cycle 0.00089% 0.00078
%



Flavour Changing Neutral Current
● FCNC top-quark decays are strongly suppressed in SM (CKM+GIM)
● Signatures: t → cγ, t → cH, t → c + missing energy
● top decaying to charm, where the charm tagging capability at CLIC can be exploited
● Results: 95% C.L. limits (500 fb−1 @ 380 GeV)

BR(t → cγ ) < 4.7 x 10−5

CMS@HL-LHC[1]: BR(t → cγ ) < 7.4 x 10−5

BR(t → cH)×BR(H → bb) < 1.2 x 10−4

ATLAS@HL-LHC[2]: BR(t → cH) < 2 x 10−4

BR(t → c + missing energy)(*): 1.2 − 4.1 x 10−4

(*) depends on invisible mass, BDTs trained for different masses
Erica Brondolin 46

t→ cγ t→ c + missing energy

[1] https://cds.cern.ch/record/2293646
[2] https://cds.cern.ch/record/2209126



Higgs physics at CLIC

Fully model-independent analysis:
Free parameters Γ

H
 and ten Higgs couplings

No assumption on invisible Higgs decays 

Model-dependent analysis:
Γ

H
 constrained by the SM expectations

No invisible Higgs decays
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The Particle Flow approach

Erica Brondolin 48

Main idea of Particle Flow approach: 
● Average jet composition:→ Use the best information

60% charged particles → tracker

30% photons → ECAL

10% neutral hadrons → HCAL

● Hardware: 

Resolve energy deposits from different particles

→ High granularity calorimeters

● Software: 

Associate energy deposits to the correct individual particle

→ Sophisticated reconstruction software

https://cds.cern.ch/record/2293646
https://cds.cern.ch/record/2209126


Flavour tagging at CLIC

Erica Brondolin 49

I 

b- and c-tagging in e+e- → qq events

● Vertex finder reconstructs 

primary and secondary 

vertices

● Jet reconstruction using jet 

clustering algorithm



Jet resolution at CLIC
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I 

Jet energy resolution computed using the 

width of the total reconstructed energy

Jet energy resolution computed using

jets clustered with the Valencia algorithm

Jet energy resolution including 3 TeV background

using double sided Crystal Ball fit

Jet energy resolution 

including 3 TeV background



High Accelerating Gradient Challenge
● State of the art superconducting cavities can provide 35 MV/m but require costly 

cryogenics installation
● Widely used accelerator power sources - klystrons - cannot efficiently provide pulses at 

required frequency (12 GHz), pulse duration (152 ns)
● Required 9.2 TW peak RF power, 244 ns pulse length repeated at 50 Hz would need 

35 000 klystrons to provide enough power - unfeasible and cost ineffective
● Klystrons can be used to give power to classical low frequency cavities and accelerate 

a so-called drive beam
● This beam with low energy (2.4 GeV) and 

high current (100 A) is used as a power source 

for high frequency RF cavities
● Drive beam is thus decelerated in special 

Power Extraction and Transfer Structures 

(PETS) to only 10% of its initial energy
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Top-quark physics at CLIC
Motivations:
● Top quark is the heaviest known particle
● Yukawa coupling to Higgs boson yt~1 → key to 

understanding Electroweak Symmetry Breaking
● Top quark decays before hadronising 

→ test ground of QCD
● Large loop contribution to many precision measurements
● Sensitive to many BSM scenarios a window to BSM
● So far top quark only measured at hadron colliders

Erica Brondolin 52

e+e- → tt → 6 jets @ 380 GeV



Flavour Changing Neutral Current
Analysis procedure:
● event classification and pre-selection

(based on flavour tagging, lepton and photon identification, global event properties and 

jet clustering results)
● kinematic fit (for signal and background hypothesis)
● final selection based on multivariate analysis (BDT)

Erica Brondolin 53



Beam-induced backgrounds
CLIC achieves high luminosities by using extremely small beam sizes

→ 3 TeV CLIC bunch size: σ
x,y,z

 = {40 nm, 1 nm, 44 μm} 

(at LHC σ
T,z

 = {16.7 μm, 7.55 cm}) 

→ very high EM-fields→ beam-beam interactions

Main backgrounds:
● Incoherent e+e- pairs 

→ High occupancy

→ Mostly in the forward region 

→ Impact on detector granularity and design 
● γγ → hadrons

→ High energy deposits 

→ Impact on detector granularity, design 

and physics measurement

Detector acceptance starts at 10 mrad

Effect is dependent on √s

→ Background particles

→ Reduces √s
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