

"My own visions of CLIC", artwork by Natasha de Heney, 2010

News on physics and detectors at CLIC

Erica Brondolin erica.brondolin@cern.ch

on behalf of the CLICdp Collaboration

New Trends in High-Energy Physics Budva, 27th September 2018

Main topics

- Introduction
- CLIC accelerator
- CLIC detector
- Physics potential
- Summary

"My own visions of CLIC", artwork by Vilma Heiskaner, 2010

Introduction

CLIC accelerator

- CLIC = Compact Linear Collider
- High-luminosity linear e⁺e⁻ collider
- Centre-of-mass energy from few hundred GeV up to 3 TeV
- CLIC would be implemented in several energy stages (7-8 years each)
- <u>NEW</u> baseline scenario:

Stage	Centre-of-mass en.	L _{int} (fb ⁻¹)
1	380 GeV (and 350)	1000
2	1.5 TeV	2500
3	3 TeV	5000

- + 80% polarization of the e⁻ beam
- Physics goals:
 - $\rightarrow\,$ Precision measurement of SM processes
 - \rightarrow Precision measurement of new physics

(discovered at LHC or CLIC)

 \rightarrow Search for BSM

Compact Linear Collider (CLIC) 380 GeV - 11.4 km (CLIC380)

Erica Brondolin

CLIC collaborations

CLIC accelerator collaboration~70 institutes from ~30 countries

CLIC accelerator studies:

- CLIC accelerator design and development
- Construction and operation of CTF3

CLIC detector and physics (CLICdp) ~30 institutes from 18 countries

Focus of CLIC-specific studies on:

- Physics prospects and simulation studies
- Detector optimization + R&D for CLIC

http://clic.cern

Erica Brondolin

"My own visions of CLIC", artwork by Alexander Duncan, 2010

CLIC accelerator

Power-generating structure

a Brondolin

- → Drive beam: 12 GHz bunch structure, high current (100 A),
 low energy (2.4 GeV -240 MeV), klystron acceleration
 → Main beam for physics: lower current (1.2 A), high energy (9 GeV-1.5 TeV), accelerated by the RF cavities powered by the deceleration of the drive beam in special RF structures (PETS)
- Two beam technique demonstrated at CERN, CLIC CTF3 test facility

Two-beam setup

Beam-induced backgrounds

e⁺e⁻ Pairs

CLIC achieves high luminosities by using extremely small beam sizes

→ 3 TeV CLIC bunch size: $\sigma_{x,y,z}$ = {40 nm, 1 nm, 44 µm}

(at LHC $\sigma_{_{T,z}}$ = {16.7 $\mu m,$ 7.55 cm})

- \rightarrow very high EM-fields \rightarrow beam-beam interactions
- Main backgrounds:
- Incoherent e⁺e⁻ pairs
 - \rightarrow High occupancy
 - \rightarrow Mostly in the forward region
 - $\rightarrow\,$ Impact on detector granularity and design
- yy → hadrons
 - \rightarrow High energy deposits
 - \rightarrow Impact on detector granularity, design and physics measurement

Detector acceptance starts at 10 mrad Effect is dependent on \sqrt{s}

- \rightarrow Background particles
- → Reduces \sqrt{s}

Beam at CLIC

Luminosity spectrum

- Due to beamstrahlung, important energy losses right at the interaction point
- Collision energy is reduced by the amount lost in beamstrahlung before collision

Bunch separation

- Bunch separation and background suppression drives timing requirement of detector:
 - < 10 ns hit time-stamping in tracking
 - < 1 ns accuracy for calorimeter hits

"My own visions of CLIC", artwork by Lukas Molketin, 2010

CLIC detector

CLIC detector concept

Designed for Particle Flow Analysis (PFA) and optimised for CLIC environment

Superconducting solenoid with 4T magnetic field

Vertex detector

- 3 double layers with $25 \times 25 \,\mu\text{m}^2$ pixels
- Extremely accurate ($\sigma < 3 \mu m$) and light (< 0.2 % X_o per layer)

Silicon Tracker

- Tracker composed of large pixels/strips Outer R \sim 1.5 m
- < 10 ns hit time-stamping in tracking

Fine grained calorimeters Si-W ECAL

- 40 layers \rightarrow 22 X₀ and 1 λ_1
- -5×5 mm² silicon cell size (~ 2500 m²)
- < 1 ns accuracy for calorimeter hits

Scint-Fe HCAL

- 60 layers \rightarrow 7.5 $\lambda_{\rm l}$
- 30×30 mm² scintillator cell size (~ 9000 m²) < 1 ns accuracy for calorimeter hits

Forward calorimeters

- very forward electron tagging and luminosity measurements

Return yoke & muon chambers - Used mainly for muon ID

More details in: <u>CLICdp-Note-2017-001</u>

Full det simulation and optimization

- Full Geant4 detector simulation including overlay of beam-induced backgrounds
- Full reconstruction chain including: reconstruction of tracks and clusters → particle flow objects → jets → flavor tagging
- Optimization of CLIC detector model in full detector simulations
 - \rightarrow Ensure that detector performance meets requirements

Beam-induced background rejection

Beam-induced background from $\gamma\gamma \rightarrow$ hadrons can be efficiently suppressed by applying p_t vs. time selections on individually reconstructed particles

- Identify time of physics event in the full bunch train
- Cluster time obtained by combining sub-detectors hit timing information and correct for time-of-flight
- Accept reconstructed particles depending on particle type, cluster time, and $p_{\scriptscriptstyle T}$
- Selection cuts reduce background from 1.2 TeV to 100 GeV @ 3 TeV!

<section-header>

Erica Brondolin

After the pt vs. time selections

Example: $e+e- \rightarrow ttH \rightarrow Wb Wb H \rightarrow qqb \tau vb bb at 1.4 TeV$

Detector requirements & performance

Momentum resolution

(e.g. H $\rightarrow \mu^+\mu^-$, leptons from BSM processes)

 $\sigma_{p_T}/p_T^2 \sim 2 \times 10^{-5} \,\mathrm{GeV^{-1}}$

above 100 GeV

Energy resolution for light-quark jets

(e.g. W/Z/h di-jet mass separation) $\frac{\sigma_E}{E}\sim 3.5-5~\%$ for E = 1 TeV – 50 GeV

Impact parameter resolution

(e.g. b/c tagging, Higgs couplings)

$$\sigma_{r\phi} = 5 \oplus 15/(p[\text{GeV}]\sin^{\frac{3}{2}}\theta)\mu\text{m}$$

Lepton identification efficiency > 95 % Very forward electron tagging

Erica Brondolin

Detector requirements & performance

Momentum resolution

(e.g. H $\rightarrow \mu^+\mu^-$, leptons from BSM processes)

$$\sigma_{p_T}/p_T^2 \sim 2 \times 10^{-5} \,\mathrm{GeV^{-1}}$$

above 100 GeV

Energy resolution for light-quark jets (e.g. W/Z/h di-jet mass separation) $\frac{\sigma_E}{E} \sim 3.5 - 5 \%$ for E = 1 TeV - 50 GeV

Impact parameter resolution

(e.g. b/c tagging, Higgs couplings)

$$\sigma_{r\phi} = 5 \oplus 15/(p[\text{GeV}]\sin^{\frac{3}{2}}\theta)\mu\text{m}$$

Lepton identification efficiency > 95 % Very forward electron tagging

Erica Brondolin

Detector requirements & performance

Momentum resolution

(e.g. H $\rightarrow \mu^+\mu^-$, leptons from BSM processes)

 $\sigma_{p_T}/p_T^2 \sim 2 \times 10^{-5} \,\mathrm{GeV^{-1}}$

above 100 GeV

Energy resolution for light-quark jets

(e.g. W/Z/h di-jet mass separation) $\frac{\sigma_E}{E} \sim 3.5 - 5~\%$ for E = 1 TeV – 50 GeV

Impact parameter resolution

(e.g. b/c tagging, Higgs couplings)

$$\sigma_{r\phi} = 5 \oplus 15/(p[\text{GeV}]\sin^{\frac{3}{2}}\theta)\,\mu\text{m}$$

Lepton identification efficiency > 95 % Very forward electron tagging

Erica Brondolin

Upcoming detailed CLICdet performance report

"My own visions of CLIC", artwork by Sean Steed, 2010

Physics potential

Main physics topics

- Higgs boson
- Top quark
- BSM (direct and indirect)
- What can we learn by studying the Higgs boson and the top quark in collisions?
- Which precision measurements can hint to new physics at very high scales?
- Can CLIC make direct observations although the LHC has found nothing so far?

Stage	Centre-of-mass en.	L _{int} (fb ⁻¹)
1	380 GeV (and 350)	1000
2	1.5 TeV	2500
3	3 TeV	5000

All results are produced with new scenario, if not indicated otherwise

Higgs physics at CLIC

Ζ

Η

Z

 e^+

All Higgs studies summarised in the following paper: <u>Eur. Phys. J. C 77 (2017) 475</u>

- ' Higgsstrahlung: e⁺e⁻ → ZH
 - $_{\rightarrow}~\sigma$ ~ 1/s, dominant up to ~ 450 GeV
 - $\rightarrow\,$ Higgs identification from recoil
- WW fusion: $e^+e^- \rightarrow H\nu_e\overline{\nu}_e$
 - $_{\rightarrow}~\sigma \sim$ log(s), dominant above \sim 450 GeV
 - \rightarrow Large statistics at high energy

• $e^+e^- \rightarrow HH\nu_e\overline{\nu}_e$

→ Allow simultaneous extraction of triple Higgs coupling, λ , and HHWW quadratic coupling → Benefits from high-energy operation

 \rightarrow Rarer decays more available at higher

 $\overline{\nu}_{e}$

Η

 v_e

Erica Brondolin

e

e⁺

Selected Higgs analysis

- Old staging scenario
- $H \rightarrow b\overline{b}$ requires good flavour tagging and jet energy resolution
- $H \rightarrow \mu^+ \mu^-$ visible thanks to excellent momentum resolution

- Small cross-section of double Higgs production requires highest energy and large luminosities
- HHν_eν
 _e scales by 1.8 (0.2) for -80%
 (+80%) e⁻ polarisation
- With updated running scenario, combining 1.5 TeV and 3 TeV
 - $\rightarrow \Delta g_{HHH}^{}/g_{HHH}^{} \approx 10\%$ reachable

Erica Brondolin

Higgs physics at CLIC

Fully model-independent analysis: Free parameters Γ_{H} and ten Higgs couplings No assumption on invisible Higgs decays

High precision measurements:

- Couplings with sub-1% level (at 1% for rare decays)
- The Higgs width is extracted with 4.7 2.5% precision

Higgs physics at CLIC

High precision measurements:

- Already the first CLIC stage significantly better than HL-LHC for several couplings
- The full program enhances the precision further
- $\mu\mu$, $\gamma\gamma$ and $Z\gamma$ would benefit from HL-LHC + CLIC combination

Top-quark physics at CLIC

All Higgs studies summarised in the following paper (using old staging scenario): <u>https://arxiv.org/abs/1807.02441</u>

Studies at different stages:

- <u>350 GeV and 380 GeV:</u>
 - $e^+e^- \rightarrow t\bar{t}$: Production threshold at $\sqrt{s} \sim 2m_{top}$

Large event sample at 380 GeV

- Threshold scan around 350 GeV
- Top-quark mass from radiative events or direct reconstruction of the top quark
- Flavour-changing neutral current top-quark decays
- <u>1.4 TeV and 3 TeV:</u>
 - $e^+e^- \rightarrow t\bar{t}H$: Maximum near 800 GeV
 - $e^+e^- \rightarrow t\bar{t}\nu_e^-\bar{\nu}_e$ (Vector Boson Fusion):

Benefits from highest energies

- Vector boson fusion production of top pairs
- Top Yukawa coupling
- Kinematic studies of top-pair production <u>at all stages</u>

Top threshold scan @ 350 GeV

- Well-defined 1S top mass can be measured
- $\sigma_{e^{+e^{-}} \rightarrow t\bar{t}}$ around threshold is sensitive to 1s top-quark mass, width and other model parameters
- Energy scan: 10 points with 10 fb⁻¹ from 340 GeV to 349 GeV
- Expected uncertainty on the top-mass $\sigma_{mtop} \approx 50 \text{ MeV}$ (dominated by theoretical uncertainties)
- Precision at the HL-LHC limited to several hundred MeV

→ Dedicated luminosity spectra (low bunch charge) also reduces uncertainties on the extracted top-quark width and Yukawa coupling

Top-quark coupling to Z and y

- Top quark pairs are produced via Z/y
 - \rightarrow New physics would modify the ttV vertex
- At a linear collider the **y** and **Z** form factors can be disentangled *using beam polarization* by measuring:
 - $\rightarrow\,$ production cross section
 - \rightarrow forward-backward asymmetry
 - \rightarrow helicity angle distribution (in leptonic decays)

- Expected precision at HL-LHC, ILC (500 GeV) and CLIC (380 GeV / 3 TeV)
- **ILC:** e⁻ and e⁺ polarized (80% / 30%)
- CLIC: e⁻ polarized (80%)
- Already the first CLIC stage significantly better than HL-LHC
- Result obtained with old staging scenario

Beyond Standard Model at CLIC

- CLIC operating at high energy provides significant discovery potential for BSM physics → <u>Comprehensive BSM report</u> <u>under work</u>
- **Direct searches** of new particles:

 $\rightarrow\,$ Direct searches can find particles up to 1.5 TeV

→ Possible observation of the new
 phenomena thanks to the low background
 (no QCD)

 \rightarrow Precision measurements of new particle properties (also for the ones discovered in (HL-)LHC)

• Indirect searches of new physics:

→ Precision measurements of sensitive
 observables reveal a signs of new physics,
 comparing to the SM expectations

 \rightarrow The reach is higher – several tens of TeV

Beyond Standard Model at CLIC

- If LHC discovers Z' (e.g. for M_z = 5 TeV)
- → CLIC precision measurement of effective couplings otherwise:
- \rightarrow CLIC discovery reach up to tens of TeV (depending on the couplings) More details in: <u>arXiv:1208.1148</u>

"My own visions of CLIC", collage by Erica Brondolin, 2018

Conclusions

Summary

- CLIC is e^+e^- collider from a few hundred GeV up to 3 TeV
- CLIC is a mature international project
- The accelerator technical challenges have been solved
- CLIC environment and physics goals lead to challenging requirements for

 \rightarrow **detector**: Strong R&D programme on ultra-light vertex and tracking detectors & fine-grained calorimeters

 \rightarrow **software**: Full detector simulation and reconstruction already in place, which allows not only detailed analysis but also studies for detector optimization

CLIC is a precision machine with a unique physics potential

Energy-staging \rightarrow optimal for physics:

- 380 GeV: Optimised for high precision measurements of Higgs boson and top quark
- 1.5, 3 TeV: Best sensitivity for BSM searches, rare Higgs processes and decays
- $\rightarrow\,$ High physics potential already at the first stage, possible start from 2035
- A statement about CLIC as a future option for CERN is expected from the 2019-2020 update to European Strategy of Particle Physics → stay tuned!

Thank you for the attention!

Bibliography and sources

- CLIC Conceptual Design Report: <u>http://clicdp.web.cern.ch/content/conceptual-design-report</u>
- CLIC accelerator and artworks: <u>http://clic-study.web.cern.ch</u>
- CLICdet: The post-CDR CLIC detector model: https://cds.cern.ch/record/2254048
- Higgs physics at the CLIC electron–positron linear collider: <u>https://arxiv.org/abs/1608.07538</u>
- Projections for measurements of Higgs boson signal strengths and coupling parameters with the ATLAS detector at a HL-LHC:

https://cds.cern.ch/record/1956710

- Top-Quark Physics at the CLIC Electron-Positron Linear Collider: <u>https://arxiv.org/abs/1807.02441</u>
- Physics performances for Z' searches at 3 TeV and 1.5 TeV CLIC: <u>https://arxiv.org/abs/1208.1148</u>
- Academic Training Lecture about CLIC: <u>https://indico.cern.ch/event/668147/</u>
- Luminosity spectrum reconstruction at linear colliders: <u>Eur.Phys.J. C74 (2014) no.4, 2833</u>

CLIC timeline

2013 - 2019 Development Phase

Development of a Project Plan for a staged CLIC implementation in line with LHC results; technical developments with industry, performance studies for accelerator parts and systems, detector technology demonstrators

2020 - 2025 Preparation Phase

Finalisation of implementation parameters, preparation for industrial procurement, Drive Beam Facility and other system verifications, Technical Proposal of the experiment, site authorisation

2026 - 2034 Construction Phase

Construction of the first CLIC accelerator stage compatible with implementation of further stages; construction of the experiment; hardware commissioning

2019 - 2020 Decisions

Update of the European Strategy for Particle Physics; decision towards a next CERN project at the energy frontier (e.g. CLIC, FCC)

2025 Construction Start

Ready for construction; start of excavations

2035 First Beams

Getting ready for data taking by the time the LHC programme reaches completion

О

Old/new stage scenarios

• **<u>NEW</u>** baseline scenario:

Stage	Centre-of-mass en.	L _{int} (fb ⁻¹)
1	380 GeV (and 350)	1000
2	1.5 TeV	2500
3	3 TeV	5000

- + 80% polarization of the e^- beam
- 1 year = 1.2 x 10⁷ seconds
- 27 years
- <u>OLD</u> baseline scenario:

Stage	Centre-of-mass en.	L _{int} (fb ⁻¹)
1	380 GeV 350 GeV	500 100
2	1.5 TeV	1500
3	3 TeV	3000

- + no polarization of the beam assumed as baseline
- 1 year = 1.2 x 10⁷ seconds
- 22 years

Old/new stage scenarios

• **<u>NEW</u>** baseline scenario:

Stage	Centre-of-mass en.	L _{int} (fb ⁻¹)
1	380 GeV (and 350)	1000
2	1.5 TeV	2500
3	3 TeV	5000

- + 80% polarization of the e^{-} beam
- 1 year = 1.2×10^7 seconds
- 27 years
- <u>OLD</u> baseline scenario:

Stage	Centre-of-mass en.	L _{int} (fb ⁻¹)
1	380 GeV 350 GeV	500 100
2	1.5 TeV	1500
3	3 TeV	3000

- + no polarization of the beam assumed as baseline
- 1 year = 1.2×10^7 seconds
- 22 years

Impact of polarization

- Polarization in NEW scenario:
 - 380 GeV: 0.5 $ab^{\mbox{-}1}$ with -80% and 0.5 $ab^{\mbox{-}1}$ with +80%
 - 1.4 TeV: 2 ab^{-1} with -80% and 0.5 ab^{-1} with +80%
 - 3 TeV: 4 ab^{-1} with -80% and 1 ab^{-1} with +80%
- Higgsstrahlung at first stage: precision almost independent of electron beam polarisation
- $Hv_e \overline{v}_e$ and $HHv_e \overline{v}_e$: cross section scales by 1.8 (0.2) for -80% (+80%) electron beam polarisation
 - $\rightarrow\,$ The Higgs program prefers the -80% configuration at high energy
 - (equivalent to reduction of run time due)
- The BSM sensitivity of two fermion production: benefits from some fraction with +80%, examples:
 - 1) $e+e- \rightarrow tt$ (less than 50% with +80% acceptable)
 - 2) Z' from e+e- \rightarrow µ+µ- (systematics limited already with 1 ab-1)
 - \rightarrow Also at high energy some faction of data with +80% is desired
- Collecting 80% (70%) of the luminosity with -80% electron beam polarisation at high energy corresponds to 48% (32%) more run time for double Higgs production and rare decays
- If new physics is discovered: polarisation might be useful to constrain the underlying theory

CLIC costs and power

- Ongoing: detailed bottom-up estimate of cost and power
- Current estimate: O(6 GCHF) for 380 GeV stage, power O(200 MW)
- Considerable savings compared to CERN-2016-004 identified (2016 numbers were extrapolated from 500 GeV CLIC (CDR 2012) - 6.7 GCHF)

Erica Brondolin

CLIC accelerating structures

Achieved 100 MV/m gradient in main-beam RF cavities

- R&D around the world
- Feasibility study using Break Down Rate (BDR)
- Shorter pulses allow higher gradient

Erica Brondolin

R&D in CLICdp (examples)

Vertex & Tracker

Erica Brondolin

Beam at CLIC

Luminosity spectrum

Fraction √s'/√s	380 GeV	3 TeV
> 0.99	63%	36%
> 0.9	91%	57%
> 0.8	98%	69%
> 0.7	99.5%	77%
> 0.5	≈100%	89%

- Due to beamstrahlung, important energy losses right at the interaction point
- Collision energy is reduced by the amount lost in beamstrahlung before collision
- Most physics processes are studied well above production threshold
 - \rightarrow Can profit from almost full luminosity

Bunch separation

Property √s	380 GeV	1.5/3 TeV
Train repetition rate	50 Hz	50 Hz
Bunches / train	356	312
Train duration	178 ns	156 ns
Bunch separation	0.5 ns	0.5 ns
Duty cycle	0.00089%	0.00078 %

- Bunch separation drives timing requirement of detector:
 - < 10 ns hit time-stamping in tracking < 1 ns accuracy for calorimeter hits
- Low duty cycle: Possibility of power pulsing of detectors

Flavour Changing Neutral Current

- FCNC top-quark decays are strongly suppressed in SM (CKM+GIM)
- **Signatures**: $t \rightarrow c\gamma$, $t \rightarrow cH$, $t \rightarrow c + missing energy$
- top decaying to charm, where the charm tagging capability at CLIC can be exploited
- Results: 95% C.L. limits (500 fb⁻¹ @ 380 GeV)

[1] https://cds.cern.ch/record/2293646[2] https://cds.cern.ch/record/2209126

46

(*) depends on invisible mass, BDTs trained for different masses Erica Brondolin

Higgs physics at CLIC

Fully model-independent analysis: Free parameters Γ_{H} and ten Higgs couplings No assumption on invisible Higgs decays

Model-dependent analysis: Γ_{H} constrained by the SM expectations

No invisible Higgs decays

The Particle Flow approach

Main idea of Particle Flow approach:

•	Average jet composition: \rightarrow	Use the best information	n
	60% charged particles	→ tracker	
	30% photons	→ ECAL	
	10% neutral hadrons	→ HCAL	
	30% photons 10% neutral hadrons	→ ECAL → HCAL	

• Hardware:

Resolve energy deposits from different particles

 \rightarrow High granularity calorimeters

• Software:

Associate energy deposits to the correct individual particle

→ Sophisticated reconstruction software

Flavour tagging at CLIC

- b- and c-tagging in $e^+e^- \rightarrow qq$ events Misidentification eff. Misidentification eff. LF Background → θ=10° -→ θ=20° -LF Background 🗕 1000 GeV - 500 GeV --- 200 GeV 91 GeV =80 10⁻³ 10-4 0.9 0.6 0.8 0.5 0.6 0.7 0.4 0.8 Beauty eff. Charm eff. Misidentification eff. Misidentification eff. -Charm Background **Beauty Background** - 1000 GeV - 500 GeV --- 200 GeV 91 GeV 10⁻³ 10^{-4} 0.7 0.8 0.9 0.6 0.8 0.6 0.4 0.5 Beauty eff. Charm eff.
- Vertex finder reconstructs primary and secondary vertices
- Jet reconstruction using jet clustering algorithm

Jet resolution at CLIC

High Accelerating Gradient Challenge

- State of the art superconducting cavities can provide 35 MV/m but require costly cryogenics installation
- Widely used accelerator power sources klystrons cannot efficiently provide pulses at required frequency (12 GHz), pulse duration (152 ns)
- Required 9.2 TW peak RF power, 244 ns pulse length repeated at 50 Hz would need 35 000 klystrons to provide enough power - unfeasible and cost ineffective
- Klystrons can be used to give power to classical low frequency cavities and accelerate a so-called drive beam
- This beam with low energy (2.4 GeV) and high current (100 A) is used as a power source for high frequency RF cavities
- Drive beam is thus decelerated in special Power Extraction and Transfer Structures (PETS) to only 10% of its initial energy

Top-quark physics at CLIC

Motivations:

- Top quark is the heaviest known particle
- Yukawa coupling to Higgs boson y_t~1 → key to understanding Electroweak Symmetry Breaking
- Top quark decays before hadronising
 → test ground of QCD
- Large loop contribution to many precision measurements
- Sensitive to many BSM scenarios a window to BSM
- So far top quark only measured at hadron colliders

Flavour Changing Neutral Current

Analysis procedure:

- event classification and pre-selection (based on flavour tagging, lepton and photon identification, global event properties and jet clustering results)
- kinematic fit (for signal and background hypothesis)
- final selection based on multivariate analysis (BDT)

Reconstructed missing mass for $t \rightarrow c + \not\!\!\! E$

BDT response distribution for $t ightarrow c\gamma$

Beam-induced backgrounds

e⁺e⁻ Pairs

CLIC achieves high luminosities by using extremely small beam sizes

→ 3 TeV CLIC bunch size: $\sigma_{x,y,z}$ = {40 nm, 1 nm, 44 µm}

(at LHC $\sigma_{_{T,z}}$ = {16.7 $\mu m,$ 7.55 cm})

- \rightarrow very high EM-fields \rightarrow beam-beam interactions
- Main backgrounds:
- Incoherent e⁺e⁻ pairs
 - \rightarrow High occupancy
 - \rightarrow Mostly in the forward region
 - $\rightarrow\,$ Impact on detector granularity and design
- yy → hadrons
 - \rightarrow High energy deposits
 - \rightarrow Impact on detector granularity, design and physics measurement

Detector acceptance starts at 10 mrad Effect is dependent on \sqrt{s}

- \rightarrow Background particles
- → Reduces \sqrt{s}

