Pentaquark states: recent results from theory and experiment

I. Yeletskikh

New Trends in High Energy Physics, 24-30.09.2018, Budva, Becici, Montenegro

1. Experimental results:

discovery of hidden charm pentaquarks; further studies;

2. Theoretical models:

rescattering; molecules; compact structures; predictions of new states;

3. Experimental perspectives:

new studies for known states; searches for new states;

LHCb discovery

In 2015 LHCb discovered two states in the decays of $\Lambda_b \rightarrow J/\psi, p, K$: P_{c1} : M = 4380 MeV, $\Gamma = 205$ MeV; J=3/2; P_{c2} : M = 4450 MeV, $\Gamma = 39$ MeV; J=5/2; Opposite parity

Statistical significance is 9σ and 12σ respectively for lower and higher mass states.

Decay kinematics

I.Yeletskikh, New Trends in HEP, 24-30.09.2018

 $m_{J/\psi p}$ [GeV]

 $m_{J/\psi p}$ [GeV]

Argand diagrams

Full amplitude analysis has been performed to describe $\Lambda_b \rightarrow J/\psi, p, K$ in P_c and Λ^* decay chains. Argand diagram for $P_c(4450)$ is well consistent with it's resonant nature. Amplitude behavior of $P_c(4380)$ is less clear...

Pentaquark states in suppressed channel $\Lambda_b \rightarrow J/\psi, p, \pi$

Pentaquark states has also been studied in the Cabibbosuppressed channel $\Lambda_b \rightarrow J/\psi, p, \pi$.

Statistics of these decays doesn't allow amplitude analysis. Moreover, tetraquark state $Z_c(4200)$ seems to contribute significantly to the process. Still, pentaquark model is in favor with at least **3.1** σ .

I.Yeletskikh, New Trends in HEP, 24-30.09.2018

Differences in mass, width and amplitude behavior imply different structures for $P_c(4380)$ and $P_c(4450)$ states;

Some of the proposed pentaquark structure and producton mechainsm hypotheses have been already excluded...

Pentaguark signal from rescattering effects

 P_c (4450) is located exactly at the threshold of χ_{c1} +p production:

 $M(P_c(4450)) - M(\chi_{c1}) - M(p) = 0.9 \pm 3.1 \text{ MeV}$

Rescattering mechanism can explain narrow peak of $P_c(4450)$ and can produce 'resonant-like' Argand plot:

signal in the $\chi_{c1}p$ final state.

shown that triangular It was diagram produces further enhancement of the signal being mediated by $\Lambda^*(1890)$ state.

Observation of $\Lambda_b \rightarrow \chi_{c1} p K$ decays at LHCb

Decays $\Lambda_b \rightarrow \chi_{c1} p K$ are seen by LHCb in LHC Run I data. Branching fractions are measured (~25% of $\Lambda_b \rightarrow J/\psi p K$); Signal yield is 453 ± 25 candidate events;

Search for P_c in these decays and its amplitude analysis can be performed with LHC Run II data;

Pentaquarks as $D\Sigma_c$ 'molecular' bound states

P_c(4380)

- Many exotic states are close to the thresholds of 2 heavy hadrons;
- P_c (4380) and P_c (4450) are close to the thresholds of the $\overline{D}\Sigma^*(2520)$ and $\overline{D}^*\Sigma$ (2455) combinations respectively.
- $P_{c}(4450)$ was predicted within such model before it's actual discovery. Model also suggests ground state P_c near 4320MeV.

P_c(4450)

 $\overline{D}^*\Sigma_c$

 $\overline{D}^*\Sigma_c$

DΣ^{*}

- The common 'molecular' model involves light meson exchange potential plus heavy quark-antiquark binding...
- In 'molecular' model the multiquark state is below (or very close above) molecular threshold, so it cannot decay quickly into two heavy hadrons;
- On the other hand, the 'molecular' structure is sparse enough, so that decays into quarkonia + light state are also supressed;
- That's how the model explains narrow enough multiquark states...

056012

PRL115(2015)172001 PRD 88 (2013) 05601

Mass (MeV)

4520

4480

4440

4400

4360

PLB753 (2016) 547

Pentaquarks as $D\Sigma_c$ 'molecular' bound states

- Simple S-wave meson-baryon interaction gives negative parity of the pentaquark state... while experimental data are strongly in favor of opposite parity for the two P_c states;
- In more sophisticated models, higher-wave interactions can be included;
- $P_c(4450)$ in the model is a 5/2⁺ state from P-wave $\overline{D}^*\Sigma$ (2455) interaction;
- *P_c*(4380) can be a mixture of 3/2⁻ states from
 *DΣ**(2520) and *D***Σ* (2455) interactions; and, thus, it has more complicated structure;

Channel	Minimum	Minimal quark	Threshold	S-wave	Example of		
	isospin	$\operatorname{content}^{a,b}$	$(MeV)^c$	J^P	decay mode	7 7	
DD^*	0	$c\bar{c}q\bar{q}$	3875.8	1+	$J\!/\psi\pi\pi$	1200	
$D^*\bar{D}^*$	0	$c \bar{c} q \bar{q}$	4017.2	$0^+, 1^+, 2^+$	$J\!/\psi\pi\pi$	001 001 1, 2 ⁴	
D^*B^*	0	$car{b}qar{q}$	7333.8	$0^+, 1^+, 2^+$	$B_c^+\omega$	1220 2520 no.2 no.2	
$\Rightarrow \bar{B}B^*$	0	$b\overline{b}q\overline{q}$	10604.6	1^{+}	$\Upsilon(nS)\omega$	12) (13) (13) (13)	
$\Rightarrow \overline{B}^*B^*$	0	$b \overline{b} q \overline{q}$	10650.4	$0^+, 1^+, 2^+$	$\Upsilon(nS)\omega$	8 (20 0 (20 1 (20 3 (20	
$\Sigma_c \bar{D}^*$	1/2	$c\bar{c}qqq'$	4462.4	$1/2^{-}, 3/2^{-}$	$J\!/\psip$	1100 1110 1111	
$\Sigma_c B^*$	1/2	$c\overline{b}qqq^{\prime}$	7779.5	$1/2^{-}, 3/2^{-}$	$B_c^+ p$.Lett .Lett .Lett .Lett	
$\Sigma_b \bar{D}^*$	1/2	$bar{c}qqq'$	7823.0	$1/2^{-}, 3/2^{-}$	$B_c^- p$	Rev Rev Rev Rev	
$ \Sigma_b B^* $	1/2	$b\bar{b}qqq'$	11139.6	$1/2^{-}, 3/2^{-}$	$\Upsilon(nS)p$	Phys Phys Phys	
$\Sigma_c \bar{\Lambda}_c$	1	$c \bar{c} q q' \bar{u} \bar{d}$	4740.3	$0^{-}, 1^{-}$	$J/\psi \pi$		
$\Box \Sigma_c \overline{\Sigma}_c$	0	$car{c}qq'ar{q}ar{q}'$	4907.6	$0^{-}, 1^{-}$	$J/\psi \pi \pi$		
$\Sigma_c \bar{\Lambda}_b$	1	$car{b}qq'ar{u}ar{d}$	807 4100		 		10680
$\Sigma_b \bar{\Lambda}_c$	1	$b \bar{c} q q' \bar{u} \bar{d}$	810		7 (1000)0	Z. (10650) [±]	
$\Sigma_b \overline{\Lambda}_b$	1	$bar{b}qq'ar{u}ar{d}$	114	Z _c (4020) ⁻	= Z _c (4020)		
$\Sigma_b \overline{\Sigma}_b$	0	$bar{b}qq'ar{q}ar{q}'$	116 2 4000		11 55	-	10640
			N) sse		Z_(3900) ⁰	$Z_{b}(10610)^{\pm}$ $Z_{b}(10610)^{0}$	
	wn states		≌ ₃₉₀₀ -	Z _c (3900) [±]			10600
				DD*			
			2000				10500
.Yeletskikh,	New Trends	in HEP, 24-30.09.	2018 3800 -	X Z _c ⁺	Z _c ⁰ X	Z_b^{\pm} Z_b^0	- 10560

Predictions from the simple S-wave potential model:

Existence of P_c (4380) and P_c (4450) firmly suggests also the existence of charmonium open strangeness pentaquarks...

One of the perspective channels to look for it is Ξ_b baryon decays, with strange P_{cs} decaying into $J/\psi \Lambda^0$ with roughly same decay rate as P_c

 Ξ_b baryon production is ~200 times suppressed compared to Λ_b baryon. LHCb has reconstructed 99±12 + 209±17 Ξ_b candidates in $J/\psi \Lambda^0 K^\pm$ channel with Run I data;

Amplitude analysis of these decays is possible with LHC Run II statistics and (depending on the existence of P_{cs}) can definitely shed more light on P_c structure;

Molecular models cannot accurately describe some of the observed states $(P_c(4380))$, on the other hand, they predict many states, that have not been observed...

To address the problem, the models of compact structure of exotic states are suggested.

Such models usually suggest existence of the multiplets of exotic states... e.g., one can expect existence of open-strangeness pentaquarks at ~4.55—4.60GeV as well as doubly-strange pentaquarks at ~4.7GeV;

Observation of such states is in principle possible in decays of Ξ_b and Ω_b baryons;

However, no proved open heavy-flavor multiquark states so far...

- Discovery of the 5 new Ω_c states made by LHCb in the final state of $\Xi_c K$;
- $\Omega_{c}(3000), \Omega_{c}(3050), \Omega_{c}(3066), \Omega_{c}(3090), \Omega_{c}(3119)$
- Evidence for additional broad state at 3188;
- Evidence of $\Omega_c(3066)$, $\Omega_c(3090)$, $\Omega_c(3119)$ decaying into $\Xi'_c K$;
- Amplitude analysis has not been performed yet;

Resonance	Mass (MeV)	Γ (MeV)	Yield	N_{σ}
$\Omega_{c}(3000)^{0}$	$3000.4 \pm 0.2 \pm 0.1^{+0.3}_{-0.5}$	$4.5\pm0.6\pm0.3$	$1300 \pm 100 \pm \ 80$	20.4
$\Omega_{c}(3050)^{0}$	$3050.2 \pm 0.1 \pm 0.1 ^{+0.3}_{-0.5}$	$0.8\pm0.2\pm0.1$	$970 \pm 60 \pm 20$	20.4
		$< 1.2\mathrm{MeV}, 95\%$ CL		
$\Omega_{c}(3066)^{0}$	$3065.6 \pm 0.1 \pm 0.3 \substack{+0.3 \\ -0.5}$	$3.5\pm0.4\pm0.2$	$1740 \pm 100 \pm 50$	23.9
$\Omega_{c}(3090)^{0}$	$3090.2 \pm 0.3 \pm 0.5^{+0.3}_{-0.5}$	$8.7\pm1.0\pm0.8$	$2000\pm140\pm130$	21.1
$\Omega_{c}(3119)^{0}$	$3119.1 \pm 0.3 \pm 0.9^{+0.3}_{-0.5}$	$1.1\pm0.8\pm0.4$	$480\pm70\pm30$	10.4
		$< 2.6\mathrm{MeV}, 95\%$ CL		

Some theoretical works suggest these states are opencharm pentaquarks having diquarkdiquark-antiquark structure...;

Perspectives of experimental studies of P_c (4380) and P_c (4450) states

- Precise measurements in the discovery mode;
- Amplitude analysis of the $\Lambda_b \rightarrow J/\psi, p, \pi$;
- Search for different decay modes:

 $\Lambda_b \rightarrow \chi_{c1} p K; \quad \Lambda_b \rightarrow \Lambda_c D^0 K;$

• Search for different production modes:

 $\Lambda_b \rightarrow J/\psi, p, K^*;$ {Y,B_s} $\rightarrow J/\psi, p, p; \quad \Xi_b \rightarrow J/\psi, p, K, K; \text{ etc.}$

- Direct photoproduction of P_c states: $p\gamma \rightarrow P_c \rightarrow J/\psi, p;$ (JLab) • P_c in ee-collisions (BELLE-II)
- P_c in *ee*-collisions (BELLE-II).

Multipurpose experiments (e.g., ATLAS, CMS) suffer from absence of hadron ID. They can only benefit from high luminosity and try special decays, e.g., $B_s \rightarrow J/\psi, p, p; \Lambda_b \rightarrow J/\psi \Lambda^0 \varphi$ $= \bar{L}_b \rightarrow \Lambda_b \pi \rightarrow J/\psi, p, K, \pi;$

- Search for P_c partners, e.g., $\overline{D}\Sigma$ ground state around 4320MeV...
- Very promising is search for charmonium open-strangeness pentaquarks: $\Xi_b \rightarrow J/\psi \Lambda^0 K^{\pm}$; $\Lambda_b \rightarrow J/\psi \Lambda^0 \varphi$; and further – charmonium doubly-strange states...
- Search for hidden-bottom pentaquarks, dibaryon states, etc., suggested by molecular models...
- Search for exotic states in rare decays;
- Search for open-heavy-flavor states;

- *P_c* states are discovered with 9σ and 12σ respectively, confirmed by different analysis strategies and firmly consistent with data in the suppressed channel; this opened the whole new spectroscopy of new states....
- Model of sparse meson-baryon state ('molecule') works very good for the $P_c(4450)$ state; it is also well consistent with a rescattering model, which is straightforward to be tested in experiment...
- 'Molecular' models suggest many new exotic states, e.g., hidden-bottom pentaquaks, dibaryon states, etc.
- $P_c(4380)$ is more mysterious... experimental data do not show it's resonant nature. It can be a mixture of states or have some compact
- Numerous ideas for new measurements and new searches!!!

Thank you for your attention...