Modern approaches in ultra-low background experiments at the LSM underground laboratory

Evgeny Yakushev, JINR, Dubna, Russia What is connection of high energy physics and investigation of rear processes underground ?

Underground physics

- Physics beyond the standard Model, search for rare events or decays
- Proton decay GeV
 Origin of the creation of deep underground labs
 SUSY
- Neutrino oscillations and astronomy MeV GeV
 - **Solar neutrinos**
 - □ Atmospheric
 - Accelerators
 - **Gamma** SuperNovae
- Neutrino properties MeV
 - **Double beta decay** Nature of neutrino and mass
- Dark matter keV Universe content

Dark Matter puzzle

- Cosmology
 - non-baryonic DM in the earlyUniverse [WMAP, Planck, ...]
- Astrophysics
 - Gravitational probes at galactic/cluster

sizes

- WIMPs present in our Galaxy with density $\sim 0.3 \text{ GeV/cm}^3$
- Particle Physics
 - Thermal relics WIMPs appear as natural consequence of SUSY [LHC]
- Indirect Searches
 - Annihilation decay products:

too many phenomena too be decisive (?),

many experiments with different approaches

- Direct Searches:
 - background free measurements
 - winter/summer modulation measurements
 - Is DM particles of the halo are those can be produced at LHC?

Neutrinoless Double Beta Decay, and its importance for Neutrino Physics and Astrophysics

In the Standard Model this process cannot occur without neutrinos

Observation at any level would imply:

- Lepton number L is not conserved
- Neutrinos have *Majorana masses* masses with a different origin than the quark and charged lepton masses
- Neutrinos are their own antiparticles

Observation of $0\nu\beta\beta$ would make more plausible:

- •The See-Saw model of the origin of neutrino mass
- Leptogenesis, an outgrowth of the See-Saw, which may be the origin of the baryonantibaryon asymmetry of the Universe

General opinion of the particle physics community:

A non-zero signal for $0\nu\beta\beta$ would be a tremendously important discovery

2 tasks for any modern experiment:

- Target mass (i.e. expected number of "good" events)
- Reduction and understanding of backgrounds
- Cosmic rays and cosmic activation
- Ambient natural radioactivity

...

- Radioactivity of materials
- Radioactive dust
- Radioactive gases
- Exotic (neutrino induced background, etc)

Very performant detector(s) Energy threshold, good resolution(s), selection power

> Large volume 10 kg – 1 ton

Efficient shielding, Underground lab, material selection, ...

Shield/ underground

Primary cosmic rays composed essentially of all periodic elements:

- ~ 89% protons, ~ 10% helium nuclei
- ~1% heavy elements (C, O, Si, ...)
- At sea level, most are muons with mean energy at 4 GeV, but there are also much higher energies
- Also, about 20% are fast neutrons
- Only deep underground laboratories can provide effective shield from the cosmic

muons at Earth's surface

Modane Underground Laboratory (LSM)

chr

LSM / experiments

Direct DM search EDELWEISS

Doble beta decay with scintillating bolometers CUPID

Heavy elements in nature SHIN

Double EC TGV-II

Traditional methods for reduction of backgrounds

- Underground laboratory
- Low radioactive materials
 - Material selection
 - Clean rooms
 - Clean conditions, (include air) during all phases of the experiment
- Multi layer passive and active shields (include shields from radioactive gases in air, from dust, etc)
 - New bigger detectors provides effective self-shielding

Natural radioactivity is presented everywhere,

High penetration power

Connected problem – radioactive gases in the atmosphere (Rn, Kr, Ar)

Connected problem – radon progenies, ¹⁴C, ...

• Ultra pure materials (screening facilities, distillation and purification of liquids, radon free clean rooms for storage / assembly/ run).

• Shields

• Special methods (γ /nuclear recoil discrimination, fiducial cut, etc)

This days background requirement: <1 event per kg per year For example human body has: ~100 Bq/kg Need to reduce by 10⁹ times (minimum) All construction materials have to be selected by their low radioactivity

 γ - using of multi layer shielding, need high Z, less-radioactive, easy for mechanical treatment, not very expensive.

Lead is good, but has problem with ²¹⁰Pb and it decay chain

Usual lead radioactivity: 20-100 Bq/kg

Solution: archeological lead, 2 centuries reduce ²¹⁰Pb activity by 1000 times

Measurements of Pb samples with the OBELIX (600 cm³ HPGe) spectrometer (LSM)

Material selection

- Low background detectors are required (usually located in underground and special low background laboratories). Very often only limits of contaminations can be obtained
- Prototype of setup is required
- Impossible to make final phase without phase1, phase2, ...,

LSM experiments: HPGe detectors in the underground lab Two from them: Low background HPGe detectors with a sensitive volume of 600 cm³; Relative efficiency: 160%;

NEMO, NEMO-2, NEMO-3, SuperNEMO EDELWEISS-1, 2 now 3 with continuous increasing of mass target and reduction of backgrounds

HPGe detectors in the LSM underground laboratory

Radon

- Natural decay chains (²³⁵U, ²³⁸U, ²³²Th)
- 222 Rn dominant, 1-1000 Bq/m³ in air (depends on season, place, etc)

Krypton

- Anthropogenic origin (nuclear fuel reprocessing)
- ${}^{85}\text{Kr} \Rightarrow 1 \text{ Bq/m}{}^3$ in air (slowely rising with time)

There are also other radioactive gases (Tritium, Ar, gases with carbon (¹⁴C), ...)

Their impact depends from particular experiment ...

Radon in nature / ²²²Rn

 LS (commercial)
 10⁻¹³ g/g

 Acrylic
 10⁻¹² g/g

 Teflon
 10⁻¹⁰ g/g

 Stainless S
 10⁻⁹ g/g

 Glass
 10⁻⁷ g/g

 Welding rod
 10⁻⁶ g/g

 Rock
 10⁻⁶ g/g

²³⁸U decay rate= 12400 Bq/g
For example, rock has ²³⁸U activity at ~10 Bq/kg

Boiling point 211K, Freezing point 202K

In normal condition: gas (radioactive gas!)

Radon is noble gas! \Rightarrow main "unfavourable" property is high penetrability in many medias (plastics, some glasses, etc), non transparent for "usual" gases

WARNING: If there is a weak point in your system, radon (unfortunately) will find it !

It has 3.8 days life time, long enough for it!

Important: metals non transparent for radon!

Radon can escape from metals only due recoil energy after alpha decay of radium

 \Rightarrow natural radioactivity of surface layer (10-30 nm) of metal is important

 \Rightarrow it is important to know, that radium go to surface when a metal is melting (need to remove surface layer by chemical or other way to lower radon emanation from metal surface)

Compound	Ostwald coefficient (L)
Water	0.285
cs ₂	23.14
CHCl3	15.08
Benzene	12.82
Toluene	13.24
Hexane	16.56
Xylene	15.4
Di-ethyl-ether	15.08
Petroleum	9.01
1-Pentanol	10.6
2-Butanol	7.58
Methanol	5.4

Solubility of radon in water (1)

SuperNEMO example

The fight against radon

Radon emanation setup.

Tracker module under Rd measurement

SuperNEMO example

The Bi-Po 3 detector

- HPGe spectroscopy not sensitive enough to reach few µBq/Kg: BiPo-3 dedicated setup at Canfranc underground lab
- 2 modules of 3.0x0.6 m² can measure up to 1.4 kg of ⁸²Se foil with thickness of 40 mg/cm²
- ²¹⁴Bi and ²⁰⁸Tl measured trough process from natural radioactivity chain
- Thin radiopure plastic scintillators coupled to lightguides and low radioactivity PTMs

Shields / radon

Radon level at cryostat proximity < 50 mBq/m³, thanks to anti-radon factory Continuous control with high sensitive radon detector Before of building of modern low background experiment we have to solve the radon problem:

- Radon free air
- Radon free clean rooms for storage/assembly
- Distillation and purification of liquids / gases
- Radon control measurements everywhere (not only at the setup)

Neutron background sources underground:

Low energy neutrons induced by U/Th activities

- fission and (α,n) reactions in the surrounding rock/concrete
- fission reactions in detector shield

High energy neutrons induced by muons

Fight with neutron background:

- 1) Go underground laboratory / reduce neutron flux by 4+ orders
- 2) Material selection
- 3) Muon veto system
- 4) Passive neutron shield
- 5) Multi-detector assembly / neutron background identification

Background model / agreement with experiment

Check in advance main parameters of the setup

Challenge: Complicated devices with many parts are difficult to implement, not always all contaminations are known

Gain: Reliability of experiment / agreement of the background model and experimental data, examination of systematic uncertainties

Additional criteria for signal selection / events identification

- Pulse shape discrimination
- Combination of methods for measurements (Ionization, Heat, Light)
- Space / time discrimination (see for example surface background reduction in next talk about the EDELWEISS experiment)
- Multi-detector assembly
- Specific behavior (seasonal variations)

Calorimeter R&D Optical unit

Calorimeter wall

The current goal: the start of the first module, which should achieve the claimed background

The SuperNEMO

Demonstrator

Source: 7kg of ⁸²Se

conditions.

Tracker R&D: Wiring robot

CO: 1 quarter of tracker

Low background R&D: BiPo-3

The $\beta\beta$ -decay pattern in the NEMO-3 detector

£		A
	NEMOS	
		Ten

 $T_{1/2}^{0\nu}(y) \propto \frac{a\varepsilon}{W} \times \sqrt{\frac{M \times t}{N_{BGR} \times \Delta E}}$

NEMO-3 ¹⁰⁰Mo, 7kg ²⁰⁸Tl: < 20 μBq/kg

²¹⁴Bi: < 300 μBq/kg

8%

8% @ 3 MeV

 $T_{1/2} > 2 \ge 10^{24} y$ $< m_y > < 0.3 - 0.6 eV$ Isotope, mass

Background in ββ-foil

Efficiency

Energy resolution (FWHM)

Sensitivity

SuperNEMO

⁸²Se,100-200 kg

²⁰⁸Tl: < 2 μBq/kg ²¹⁴Bi: < 10 μBq/kg

30%

4% @ 3 MeV

 $T_{1/2} > 1-2 \ge 10^{26} y$ $< m_v > < 40 - 110 \text{ meV}$

Clean room for ⁸²Se purification (DLNP JINR)

Telescope Germanium Vertical (TGV-2) 32 HPGe planar detectors Ø60 mm x 6 mm with sensitive volume: 20.4 cm² x 6 mm Total sensitive volume: ~400 cm³ Total mass of detectors: ~3 kg Total area of samples : 330 cm² Total mass of sample(s) : $10 \div 25$ g Total efficiency : $50 \div 60 \%$ E-resolution : $3 \div 4 \text{ keV}$ @ ⁶⁰Co double beta LE-threshold : $40 \div 50 \text{ keV} (5 \div 6 \text{ keV})$ emitters **Double beta emitters:** 16 samples (~ 50 μ m) of ¹⁰⁶Cd (enrich.75%) 13.6 g ~ 5.79 x 10²² atoms of ¹⁰⁶Cd Cd PS PS Cu LN PA

PASSIVE SHIELDING

The SHIN experiment is aimed at searching for EkaOs (Z=108 element) in an Osmium sample by measuring its spontaneous fission (or/and that of its descendants) by the detection of the multiple neutron emission following the SF. A neutron multi-detector developed at FLNR-JINR is now in operation in the (LSM), Modane Underground Laboratory (60 detectors (3He filled) in a polyethylene moderator). The sample to be measured is placed in the central cavity.

CUPID / EDELWEISS

Another important trend: synergy

In the LSM, the excellent example of the synergy is search for $0\gamma 2\beta$ decay of ¹⁰⁰Mo with the scintillating bolometer approach: the CUPID experiment (Li₂¹⁰⁰MoO₄ bolometers) in the EDELWEISS cryostat

LMO

150 c

Exposure

[kg×yr]

32

34

41

504

ββ

Nuclide

130**Te**

100Mo

76**Ge**

136**Xe**

CUPID/Mo in EDELWEISS

Mixing chamber

0 0 0

• The aim of this talk was to reveal some details about underground physics for high energy community;

• In general, all modern methods of nuclear physics have to be applied to achieve the sensitivity levels that are interesting now for particle physics;

• JINR (Dubna) conducts modern world leading experiments in LSM underground laboratory dedicated to search and investigation of rear processes by means of nuclear physics methods.

Roman lead

We drill a hole in the ingot and collected samples from different depth

ICP-MS elemental analysis						
	Pb Hellas	Pb ingot	Pb ingot	Pb ingot	Pb ingot	Pb ingot
	ppm	0-1.5 cm	1.5-3.7 cm	3.7-5.4 cm	5.4-7.15 cm	7.15-9.15 cm
		ppm	ppm	ppm	ppm	ppm
Ni	3.9	10.2	10.6	12.5	9.5	18.6
Ag	62.1	80.7	90.7	98.2	69	158
Cd	< 0.05	<0.1				
Sb	1.1	79.2	71.6	83	56.5	104
Tl	0.88	<0.7				
Bi	5.1	<4				
Th	Limit (<0.6	.6 ppb Hellas, <0.2 ingot)				
U	Limit (<2 ppb Hellas, <5 ppb ingot)					

Archeological Pb ingot are clean, attention to contamination during a treatment!

Fission yields of krypton-85				
 Fission yield (%)				
Nuclide	therma	l fast		
 232Th		4.14		
233U	2.28	2.12		
235U	1.32	1.33		
238U		0.74		
239Pu	0.558	0.62		
