Status and prospects of charged lepton flavor violation searches with the MEG-II experiment

Cecilia Voena

INFN Roma

on behalf of the MEGII collaboration

New Trends In High Energy Physics Budva, 24-30 September 2018

Charged lepton flavor violation

 Allowed but unobservable in the Standard Model (with neutrino mass ≠0)

 Enanched, sometimes just below the experimental limit, in many New Physics models

Observation of CLFV is a clean signal of Physics beyond the Standard Model

Crivellin et. al.

arXiv:1706.08511

History and future experiments

Why $\mu \rightarrow e\gamma$?

- Theoretically can be favored or disfavored vs other CLFV processes depending on the New Physics model
- Intense muon beams available:
 - PSI presently: up to few $10^8~\mu/s$, future perspectives: $10^9\text{--}10^{10}~\mu/s$
- Clean experimental signature

- positive muon decays at rest

Simultaneous back-to-back e⁺ and γ with E_{γ}= E_{e+}= 52.8 MeV

Discriminating variables: $E_{e+}, E_{\gamma}, T_{e\gamma}, \Theta_{e\gamma}$

Accidental

- accidental coincidence of $e^{\scriptscriptstyle +}$ and γ
- proportional to ${\Gamma^2}_\mu$ for given detector resolutions:
- signal proportional to Γ_{μ}

(Γ_{μ} = beam intensity)

$$B_{\rm acc} \circ \Gamma^2_{\mu} \cdot \delta E_e \cdot (\delta E_{\gamma})^2 \cdot \delta T_{e\gamma} \cdot (\delta \Theta_{e\gamma})^2$$

Michel or radiative decay: μ ->e(γ)vv

- Radiative muon decay
- proportional to Γ_{μ}
- e⁺ and γ simultaneous as for signal
- thus peaking in the T_{ev} variable

The MEG(II) location: PSI lab

- Paul Scherrer Institute
 - continuous muon beam up to few $10^8 \mu^+/s$

- Multi-disciplinary lab:
 - fundamental research, cancer therapy, muon and neutron sources
 - protons from cyclotron (D = 15m, $E_{proton} = 590 MeV$ P = 1.4MW)

The PSI surface muon beam

- Decay at rest of $\pi^{\scriptscriptstyle +}$ on the target surface
- Select positive muons to avoid caputre (P_{μ} ~29 MeV)
- It is possible to focalize and stop the muons in a thin target to reduce multiple scattering of the e⁺

The MEG experiment for $\mu \rightarrow e\gamma$ search

liq.Xenon photon detector (~900PMTs/~900L LXe, excellent resol.)

muon stopping target (200um CH2 target)

Timing Counter

(Very Fast, 45ps)

muon transport

COBRA Solenoid

(highly gradient B-field)

Drift Chamber

(Very Light, ~0.002X0)

World Most Intense DC Muon (3x10⁷ muon/sec)

~65 physicists

(12institutes/5countries)

MEG BR($\mu \rightarrow e\gamma$) limit result

- 7.5 x 10¹⁴ stopped muons in 2009-2013
- 5 discriminating variables: E_e , E_v , T_{ev} , θ_{ev} , ϕ_{ev}
- Likelihood analysis + frequentistic approach

Next: MEG upgrade: MEG-II

- Same detector concept as in MEG
- Increase beam intensity from 3 x $10^7 \,\mu/s$ to 7 x $10^7 \,\mu/s$
- Cannot exploit full available beam intensity due to accidental background

optimized to enhance sensitivity (accidental background prop. to l² _µ)

MEG-II detector highlights: Liquid Xenon

- Liquid Xenon Calorimeter with higher granularity in inner face:
 - better resolution, better pile-up rejection

First events/spectra from 2017 data

52.8 MeV???

beam y

energy spectrum

- Detector assembled, filled with LXe
 - commissioning on-going, tests already during 2017 pre-engineering run

MEG-II detector highlights: Drift Chamber

- Single volume drift chamber with 2π coverage
 - 2m long ,1300 sense wires
 - stereo angle (6° -8°)
 - low mass
 - high trasparency to TC (double signal efficiency)
- On beam in fall 2018

MEG-II detector highlights: Timing Counter

- High granularity:
 - 2 sections of 256 plastic scintillator tiles
 - tiles read by 3x3 mm² SiPM
- Complete detector took data in 2017
 - already reached design resolution

- σ_T =35ps

MEG-II detector highlights: RDC, DAQ, Trigger

- RDC: New auxiliary detector for radiative decay background rejection
 - detect positron in coincidence with photon

Commissioned during 2017 run

- improve sensitivity by 15%

 μ^+ beam γ (RMD) μ^+ beam e^+ (RMD) e^+ (Michel) e^+ spectrometer

 New version of DRS (Wavedream) custom digitization board integrating both digitization, triggering and some HV
 successfully tested in 2017 with XEC, TC, RDC

MEG-II goals and schedule

event selection

80

85

Next generation of $\mu \rightarrow e\gamma$ searches

- Activities around the world to increase the muon beam rate to¹⁴0⁹-10¹⁰ muons/s
- Crucial to understand which factors will limit the sensitivity

$$B_{sig} \mu G_m \qquad B_{acc} \mu G_m^2 \times \mathcal{O}E_e \times (\mathcal{O}E_g)^2 \times \mathcal{O}T_{eg} \times (\mathcal{O}Q_{eg})^2$$

- For a given detector, there is no advantage in the increase of Γ_µ over a certain limit since at some point the sensitivity becomes constant (background dominated regime)
- MEGII, for example exploits 7x10⁷ muon/s (available 10⁸ muon/s)

Cavoto et. al.

Eur.Phys J.C78 (2018)

Next generation of $\mu \rightarrow e\gamma$ searches: photon

Calorimeter

- high efficiency
- good resolution

Requirements:

- high light yield
- fast response

Sensitivity trend vs beam intensity blue = pair conversion design black = calorimeter design red = calorimeter design with x2 resolution

 Γ_{μ} [a.u.]

Photon conversion

- low efficiency (%)
- extreme resolution
- photon direction
- Requirements:
- optimization of converter thickness
 (efficiency vs pair energy and angle resolution)

Next generation of $\mu \rightarrow e\gamma$ searches: positron

- Tracking detectors in a magnetic field are the gold candidates: high efficiency, good resolution
- Need very light detector (MEGII~10⁻³X₀) : positron reconstruction is ultimately limited by MS:
 - in the target & tracker-> angular resolution
 - in the tracker -> momentum resolution
- Silicon trackers are not competitive with gaseous detector in terms of resolution but could be the solution at very high rate

Next generation of $\mu \rightarrow e\gamma$ searches: relative time

- Timing plays a crucial role to avoid accidental coincidences
- Calorimetric approach: calorimeters+positron scintillating counters (MEG-II: T_{ey}~80ps)
- Photon conversion approach: need to measure e⁺ or e⁻ time with a fast detector for photon timing
- Several conversion layers imply to have active material behind the converter

CALORIMETRY (R&D with LaBr ₃ (Ce))						
Resolution						
	Variable	w/o vtx detector	w/ TPC vtx detector		w/ silicon vtx detector	
			conservative	optimistic	conservative	optimistic
	$\theta_{e\gamma} / \phi_{e\gamma}$ [mrad]	7.3 / 6.2	6.1 / 4.8	3.5 / 3.8	8.0/7.4	6.3 / 6.9
	$T_{e\gamma}$ [ps]			30		
7	E_e [keV]			100		
	E_{γ} [keV]		850			
daseous	Efficiency [%]	42%				
3~~~~~~						

detector

PHOTON CONVERSION

	Resolution						
\backslash	Variable	w/o vtx detector	ector w/ TPC vtx detector		w/ silicon vtx detector		
			conservative	optimistic	conservative	optimistic	
	$\theta_{e\gamma} / \phi_{e\gamma} \text{ [mrad]}$	7.3 / 6.2	6.1 / 4.8	3.5 / 3.8	8.0/7.4	6.3 / 6.9	
<u>\</u>	$T_{e\gamma}$ [ps]			50			
	E_e [keV]			100			
	E_{γ} [keV]			320			
	Efficiency [%]		1.2 (1 LAYER, 0.05 X ₀)				

Expected sensitivity

Photon conversion approach

Photon conversion vs calorimetric approach

 A few 10⁻¹⁵ level seems to be within reach for 3 years running with 10⁹ muons/s

Conclusion

- Search of $\mu \rightarrow e\gamma$ decay continues
- Best word limit from MEG experiment

BR (μ→eγ) < 4.2x 10⁻¹³ at 90% C.L.

- MEG-II
 - => expect a sensitivity of **4x10**⁻¹⁴ in 3 years
- What's next?
 - 10^9 - 10^{10} µ/s seems possible (HiMB,MUSIC..)
 - A sensitivity of few 10⁻¹⁵ level seems to be within reach for 3 years running at 10⁹ muon/s
 - Further improvements require new detector concepts

Backup

Calibrations

Present CLFV limits

Reaction	Present limit	C.L.	Experiment	Year
$\overline{\mu^+ \to e^+ \gamma}$	$< 4.2 \times 10^{-13}$	90%	MEG at PSI	2016
$\mu^+ \to e^+ e^- e^+$	$< 1.0 \times 10^{-12}$	90%	SINDRUM	1988
$\mu^- \mathrm{Ti} \to e^- \mathrm{Ti}^{\dagger}$	$< 6.1 \times 10^{-13}$	90%	SINDRUM II	1998
$\mu^- \mathrm{Pb} \to e^- \mathrm{Pb}^{\dagger}$	$< 4.6 \times 10^{-11}$	90%	SINDRUM II	1996
$\mu^{-}\mathrm{Au} \rightarrow e^{-}\mathrm{Au}^{\dagger}$	$< 7.0 \times 10^{-13}$	90%	SINDRUM II	2006
$\mu^{-}\mathrm{Ti} \rightarrow e^{+}\mathrm{Ca}^{*}^{\dagger}$	$< 3.6 \times 10^{-11}$	90%	SINDRUM II	1998
$\mu^+ e^- \to \mu^- e^+$	$< 8.3 \times 10^{-11}$	90%	SINDRUM	1999
$\tau \to e \gamma$	$< 3.3 \times 10^{-8}$	90%	BaBar	2010
$\tau \to \mu \gamma$	$< 4.4 \times 10^{-8}$	90%	BaBar	2010
$\tau \to eee$	$< 2.7 \times 10^{-8}$	90%	Belle	2010
$\tau \to \mu \mu \mu$	$< 2.1 \times 10^{-8}$	90%	Belle	2010
$ au o \pi^0 e$	$< 8.0 \times 10^{-8}$	90%	Belle	2007
$ au o \pi^0 \mu$	$< 1.1 \times 10^{-7}$	90%	BaBar	2007
$ au o ho^0 e$	$< 1.8 \times 10^{-8}$	90%	Belle	2011
$ au o ho^0 \mu$	$< 1.2 \times 10^{-8}$	90%	Belle	2011
$\pi^0 \to \mu e$	$< 3.6 \times 10^{-10}$	90%	m KTeV	2008
$K_L^0 \to \mu e$	$< 4.7 \times 10^{-12}$	90%	BNL $E871$	1998
$K_L^0 o \pi^0 \mu^+ e^-$	$< 7.6 \times 10^{-11}$	90%	KTeV	2008
$K^+ \to \pi^+ \mu^+ e^-$	$< 1.3 \times 10^{-11}$	90%	BNL $E865$	2005
$J/\psi ightarrow \mu e$	$< 1.5 \times 10^{-7}$	90%	BESIII	2013
$J/\psi \to \tau e$	$< 8.3 \times 10^{-6}$	90%	BESII	2004
$J/\psi ightarrow au\mu$	$< 2.0 \times 10^{-6}$	90%	BESII	2004
$B^0 \to \mu e$	$< 2.8 \times 10^{-9}$	90%	LHCb	2013
$B^0 \to \tau e$	$< 2.8 \times 10^{-5}$	90%	BaBar	2008
$B^0 \to \tau \mu$	$< 2.2 \times 10^{-5}$	90%	BaBar	2008
$B \to K \mu e^{\ddagger}$	$< 3.8 \times 10^{-8}$	90%	BaBar	2006
$B \to K^* \mu e^{\ddagger}$	$< 5.1 \times 10^{-7}$	90%	BaBar	2006
$B^+ \to K^+ \tau \mu$	$< 4.8 \times 10^{-5}$	90%	BaBar	2012
$B^+ \to K^+ \tau e$	$< 3.0 \times 10^{-5}$	90%	BaBar	2012
$B_s^0 \to \mu e$	$< 1.1 \times 10^{-8}$	90%	LHCb	2013
$\Upsilon(1s) \to \tau \mu$	$< 6.0 \times 10^{-6}$	95%	CLEO	2008
$Z \to \mu e$	$<7.5\times10^{-7}$	95%	LHC ATLAS	2014
$Z \to \tau e$	$< 9.8 \times 10^{-6}$	95%	LEP OPAL	1995
$Z \to \tau \mu$	$< 1.2 \times 10^{-5}$	95%	LEP DELPHI	1997
$h \to e \mu$	$< 3.5 \times 10^{-4}$	95%	LHC CMS	2016
$h \to \tau \mu$	$< 2.5 \times 10^{-3}$	95%	LHC CMS	2017
$h \to \tau e$	$< 6.1 \times 10^{-3}$	95%	LHC CMS	2017

Interplay with SUSY searches at LHC

SUSY seesaw SO(10) with PMNS slepton mixing; Calibbi, Signorelli 2017 and references therein.

MEG-II calibrations

Process	Curre	ent Limit	Next Generation exp
$\Box \rightarrow \propto \Box$	BR < 6.5 E-8	BaBar	
$\Box \rightarrow \propto \Box$	BR < 6.8 E-8	BaBar	10 ⁻⁹ - 10 ⁻¹⁰ (Belle II)
$\operatorname{xxxx} \leftarrow \Box$	BR < 3.2 E-8	Belle	
□→ eee	BR < 3.6 E-8	Belle	
$K_L \rightarrow e\infty$	BR < 4.7 E-12	BNL	
$K^{+} \rightarrow \Box^{+} e^{\Box} \infty^{+}$	BR < 1.3 E-11	BNL	NA62 might improve by O(10)
$B_0 \rightarrow e\infty$	BR < 7.8 E-8	LHCb	
B+ → K+e∝	BR < 9.1 E-8	BaBar	
∞⁺ → e⁺□	BR < 4.2 E-13	MEG@PSI	10 ⁻¹⁴ (MEG@PSI)
∞+ → e+e+e-	BR < 1.0 E-12	SINDRUM@PSI	10 ⁻¹⁶ (PSI)
\propto N → eN	R _{∞e} < 7.0 E-13	SINDRUM@PSI	10 ⁻¹⁷ (Mu2e, COMET)