MOJIVIRG

Gravitational wave astronomy with Virgo and the GW detectors network

Giacomo Ciani

for the Virgo collaboration

Istituto Nazionale di Fisica Nucleare

Virgo document: VIR-0650A-18

Primer on gravitational waves

- Wave-like perturbation of space-time that travel at the speed of light
 - Predicted by Einstein in 1916
 - Result from linearization of General Relativity field equations
- Produce a change in proper distance between geodesics
 - Act in plane orthogonal to direction of propagation
 - Two independent polarization
 - Relative distance change (strain)
- Generated by systems with non-zero second derivative of the mass quadrupole moment
 - accelerated, non-symmetric mass distributions (i.e. binary systems)
- Typical effect from astronomical sources is very small!

$$Q_{jk} = \int \rho x_i x_k d^3 x \qquad h_{jk} = \frac{2}{r} \ddot{Q}_{jk}$$
$$h_{ab} = \begin{pmatrix} h_+ & h_\times \\ h_\times & -h_+ \end{pmatrix}$$

 $\Delta L/L \sim 10^{-21}$

Broadband GW astrophysics

September 27th, 2018 - NTIHEP, Becici, Montenegro

Giacomo Ciani for the Virgo Collaboration

3

Laser interferometers

Initial detectors: not just Michelson interferometers...

Giacomo Ciani for the Virgo Collaboration

- Showed that such instruments can be successfully operated
- Set upper limits on GW emission from several sources
- Paved the (scientific, political and financial) way for Advanced Detectors

7

From Initial to Advanced

September 27th, 2018 - NTIHEP, Becici, Montenegro

Giacomo Ciani for the Virgo Collaboration

From Initial to Advanced (design values)

Also improved:

- Beam size
- mirror polishing and coatings
- compensation of thermal effects
- Vacuum
- Stray light control

14 September 2015: the birth of GW astronomy

LIGO: O1 and O2... up to August 2017

- 4 Binary Black Hole detections and one likely candidate
- 12 (15) new Black Holes observed
- Unexpected mass range
- LIGO-Virgo Collaboration effort, despite only LIGO instruments being online

LVT151012 ~~~~~~

GW150914 70 60 GW170104 **Solar Masses** ²⁰
²⁰
²⁰ LVT151012 20 **X-Ray Studies** 10 -......... GW170608 GW151226 0

Tests of General Relativity

- GW exists! No big surprise here...
- Signal vs GR models:
 - Deviation in residuals from random noise: <4%
 - Parameter inferred from pre- and post-merger phase are consistent
- No evidence of deviation in PN parameters
- Test of modified GW dispersion relation:

 $E^2 = p^2 c^2 + A p^\alpha c^\alpha$

• Upper bounds on graviton's mass

We didn't see new physics either! But we are happy about it... 🙂

Giacomo Ciani for the Virgo Collaboration

0.8

0.6

0.2

1.0

0.5

-0 4

0.5PN

Abbott et al. PRL 118, 221101 (2017)

OPN

 10^{-19}

 10^{-20}

0.0

0.5

1.0

s. $[peV^{2}$

A

40

50

60

1PN

1.5PN

 \diamond

 ∇

1.5

A > 0

A < 0

2PN

 \bigcirc

Ŧ

70

80

Final mass $M_f(M_{\odot})$

Final spin a_j

0.2

0.1

-0.1-0.2 -0^{-1}

 $\delta \hat{p}_{i}$

1.0

0.5

0.0

-0.5

-1.0

 $\Delta a_f/a_f$

inspiral

90

GW150914 + GW151226

100

110 12

Abbott et al. PRL 116, 221101 (2016)

Astrophysical results

- Bounds on merger rates: $12 230 \text{ Gpc}^{-3} \text{yr}^{-1}$
- Observed black holes in unexpected mass range
 - Hints on formation mechanisms and environment
 - Estimates of mass distribution law
 - Population estimates (needs more data)
- Hints on formation channels
 - Low-metallicity needed for high-mass BH remnant
 - Rates too high for some formation channels (but could contribute to total)
 - Misaligned spins slightly favored

AdV quest to join O2

AdV best BNS range from May 7 (C8) to July 30 (ER12)

Detectors sensitivity in O2

LIGO: O1 and O2... up to August 2017

GW170814: 3-detectors BBH observation

Abbott et al. PRL 119, 141101 (2017)

Virgo

- 31 + 25 solar masses BBH coalescence
- Virgo contribution:
 - Improved sky localization
 - First ever polarization studies

Hanford

SNR

Livingston

GW170817: the birth of multi-messenger astronomy

- Signal promptly recognized as BNS candidate
 - Long duration
 - High merger frequency
- Smoking gun: short gamma ray burst coincidence
- Virgo non-detection!
 - Accurate localization by accounting for antenna pattern

Giacomo Ciani for the Virgo Collaboration

An unprecedented coordinated observational campaign

GW170817: scientific highlights

- Confiremed BNS mergers as sources of sGRB
 - Chace association probability $> 5.3~\sigma$
- (weak) constraints on NS Equation of State
 - Less compact stars disfavored
- Independent measurement of the Hubble Constant
 - By comparison of GW distance with source redshift
- Measurement of the speed of GW (compared to EM)

0.04

0.03

p(H₀ | GW170817) (0.0

0.00

50

Mpc)

F

GW170817: kilonova emission

- Contribution of heavy elements observed in emission spectrum
 - Support hypothesis of formation by neutron capture (r-process)
- Evidence supports kilonova event
 - Atypical luminosity vs distance

To observe or to improve? This is the question...

Gravitational wave observatories are here to stay (and be useful)!

- We now have a proven network of gravitational wave *observatories*
 - "Routine" detection demonstrated
 - A roadmap exist for a steady increase in sensitivity:
 - Detection rates to increase steadily and substantially run-by-run
- Virgo is an essential complement to the LIGO detectors
 - Improved parameter estimation
 - More precise sky localization -> Multi-messenger astronomy
 - More detectors will join in the future
- Extremely *rich scientific output* even with few GW detections
 - Consequences in fundamental physics, astrophysics, astronomy...

Thanks for listening... to the tune of gravitational waves!