Study of the properties of the Higgs boson

Tomáš Davídek (IPNP, Charles University), on behalf of the ATLAS and CMS collaborations

Compact Muon Solenoid

NTIHEP, 2018

Large Hadron Collider

- Run-1 (2010-2012)
 - pp collisions at √s=7 and 8 TeV
 - collected ~25 fb⁻¹
- Run-2 (2015-2018)
 - *Js*= 13 TeV
 - so far collected more than 130 fb⁻¹ of proton-proton data
- Excellent accelerator performance !!!

ATLAS and CMS experiments

NTIHEP, 2018

Introduction to Higgs boson (1)

- Higgs boson discovery reported in July 2012, when ATLAS and CMS reported results from $H \rightarrow \gamma\gamma$, $H \rightarrow ZZ \rightarrow 4\ell$ and $H \rightarrow WW \rightarrow \ell \nu \ell \nu$ searches
- With full Run-1 data analyzed, several decay modes were experimentally discovered

	H → γγ	H → 4{	H→ WW	H → tt	H → bb
ATLAS	5.0σ	7.6σ	6.8σ	4.4σ	1.7σ
CMS	5.6σ	7.0σ	4.8σ	3.4σ	2.0σ

JHEP 08 (2016) 045

- ATLAS+CMS combination in H \rightarrow TT also exceeded 5σ
- ggF and VBF production modes observed
- All signal strengths compatible with Standard Model, although still suffering from rather large uncertainties

NTIHEP, 2018

Introduction to Higgs boson (2)

• The Higgs boson mass was determined in $H \rightarrow \gamma \gamma$ and $H \rightarrow ZZ \rightarrow 4\ell$ channels

Goal in Run-2: move from discovery to precision measurements

NTIHEP, 2018

Higgs boson production at the LHC

• Significant increase in the production rate due to higher energy in Run-2 (8 \rightarrow 13 TeV)

Higgs decay modes for m(H) = 125 GeV

- ZZ, yy: despite low BR, these channels provide high-precision results on Higgs boson properties (mass, width, couplings, cross-sections, ...)
- W+W-: high BR, but low mass resolution
- bb, T+T-: high BR, but low S/B.
 Important for determining couplings to fermions
- µ•µ-: very low BR, but gives access to fermions of 2nd generation
- Zy, cc also studied

Current Run-2 results

• Precision mass, width and cross-section (total, simplified template, differential) measurements performed mainly in two channels

$H \rightarrow \gamma \gamma$ and $H \rightarrow ZZ \rightarrow 4\ell$

- full kinematic reconstruction possible, Higgs mass determined as invariant mass of two photons or 4 leptons (e/ μ). Analysis event selection and example of the mass spectra shown in backup.
- results from these measurements summarized in next slides
- Coupling and total cross-section measurements performed in many other channels (WW, TT, $b\overline{b}$, $\mu\mu$, ...), highlights from these analyses also reported

Higgs boson mass

- ATLAS combined measurement (PLB 784 (2018) 345)
 - $H \rightarrow \gamma \gamma$ and $H \rightarrow ZZ \rightarrow 4\ell$
 - combined Run-1 and Run-2
 m(H) = 124.97 ± 0.24 GeV

 Update from CMS based on H → ZZ → 4ℓ results (JHEP 11 (2017) 047)

 $m(H) = 125.26 \pm 0.21 \, GeV$

 Both ATLAS and CMS standalone Run-2 results show better precision than combined ATLAS+CMS Run-1 results

Higgs boson width

- SM predicts $\Gamma(H) = 4$ MeV, too small to be measured directly.
- CMS provides the best direct limit $H \rightarrow ZZ \rightarrow 4\ell$: $\Gamma(H) < 1.10 \text{ GeV} @ 95\% \text{ CL}$ (JHEP 11 (2017) 047)
- Indirect measurements compare onshell and off-shell cross-section in H → ZZ*/WW*

$$\sigma_{\rm off-shell} \propto \kappa_{g,\,\rm off-shell}^2 \cdot \kappa_{Z,\rm off-shell}^2$$

$$\sigma_{on-shell} \propto rac{\kappa_{g,on-shell}^2 \cdot \kappa_{Z,on-shell}^2}{\Gamma(H) / \Gamma^{SM}(H)}$$

- assuming $\kappa_{on-shell} = \kappa_{off-shell}$ one can derive the width
- CMS Run-1 results: Γ(H) < 13 MeV @ 95% CL (JHEP 09 (2016) 051)

• recent ATLAS Run-2 measurement of $H \rightarrow ZZ \rightarrow 4\ell/2\ell+2v$: $\Gamma(H) < 14.4 \text{ MeV} @ 95\% \text{ CL} (arXiv:1808.01191)$

NTIHEP, 2018

Cross-section measurements (1)

• Total cross-section measurements with $H \rightarrow ZZ \rightarrow 4\ell$

ATLAS-CONF-2018-018

JHEP 11 (2017) 047

Cross-section measurements (2)

CMS

35.9 fb⁻¹ (13 TeV)

• Simplified template cross-section measurements in $H \rightarrow \gamma \gamma$ ATLAS-CONF-2018-028 arXiv:1807.03825

- ... as well as total cross-section in the fiducial volume
 - ATLAS: 60.4 ± 8.6 fb⁻¹, predicted by SM 63.5 ± 3.3 fb⁻¹
 - CMS: 84 ± 13 fb⁻¹, predicted by SM 73 ± 4 fb⁻¹

Tomáš Davídek, IPNP, Charles University

 σ_{fid} (fb)

Cross-section measurements (3)

- Many differential Xsec measurements exist, few examples given here. For more details, see
 - ATLAS-CONF-2018-028, ATLAS-CONF-2018-018
 - CMS-PAS-HIG-17-028
 - older ATLAS combined results available in arXiv:1805.10197
- Good agreement with Standard Model, no sign of new physics yet

$H \rightarrow WW$ (1)

• Clean signature from $W \rightarrow \ell v$, i.e. 2 neutrinos in the final state. Use of transverse mass $m_T = \sqrt{2 p_T(\ell \ell) p_T^{miss} [1 - \cos \Delta \phi(\vec{p}_T(\ell \ell), \vec{p}_T^{miss})]}$

ATLAS (arXiv:1808.09054)

- only different flavour leptons in the final state $H \rightarrow WW \rightarrow e \nu \mu \nu$
- 3 main categories based on Njets, further splitting according to m(ll) and $p_{\rm T}(\rm l2)$
- use of m_{T} (Njets=0, 1) or BDT (VBF)

CMS (arXiv:1806.05246)

- uses same and different flavour leptons as well as multi-lepton channel (WH, ZH)
- 9 categories based on Njets and $p_T(j2)$

NTIHEP, 2018

Tomáš Davídek, IPNP, Charles University

H → WW (2)

• Measured coupling constants are consistent with Standard Model predictions

$H \rightarrow \tau \tau (1)$

- The final state depends on the tau-lepton decay mode •
 - di-lepton channel: $H \rightarrow \tau \tau \rightarrow 2\ell 4v$
 - semi-lepton channel: $H \rightarrow \tau \tau \rightarrow \ell n\pi 3v (n=1-3)$
 - hadronic channel: $H \rightarrow \tau \tau \rightarrow n\pi 2v$ •
- Signatures in the detector
 - isolated electron(s) and/or muon(s) •
 - missing transverse energy •
 - reconstructed hadronic T

(dominant

accompanying jets (reflect the production mechanism) •

Dominant background comes from $Z \rightarrow \tau \tau$, also top, $Z \rightarrow \ell \ell$ and fakes contribute Tomáš Davídek, IPNP, Charles University **NTIHEP**, 2018

$H \rightarrow \tau \tau$ (2)

- ATLAS (CONF-2018-021)
 - VBF and Boosted category in ۰ each channel, further splitting to enhance sensitivity
 - reconstructed MMC mass as final discriminant
 - Events / GeV 1800 S/(S+B) weighted events / GeV **ATLAS** Preliminary CMS $\rightarrow \tau \tau \ (\mu = 1.09)$ $\sqrt{s} = 13 \, \text{TeV}, 36.1 \, \text{fb}^{-1}$ 1600 $Z \rightarrow \tau \tau$ $\tau_{\text{lep}} \tau_{\text{lep}}$ boost. high- $p_{-}^{\tau \tau}$ SR $\Box Z \rightarrow \parallel$ 00 Top Observed 1400 20 Other Backgr. H→ττ (μ=1.09) Misidentified τ 10 1200 Ζ→ττ Uncertainty W+jets 50 QCD multijet 1000 Others Bkg. unc. 800 0 600 0-jet: $\tau_h \tau_h$ Data / Bkg VBF: $\tau_{h}\tau_{h}$ 400 1. 200 0.960 80 120 200 100 140 180 160 50 0 100 150 200 $m_{\tau\tau}^{\rm MMC}$ [GeV]

- CMS (arXiv:1803.06553)
 - O-jet, VBF and Boosted categories
 - 2-dim fit on m(TT), m(jj) or р_⊤(тт)

Н → т т (3)

- Same signal strength measured by ATLAS and CMS
 - total cross-section measured by ATLAS corresponds to $\mu = 1.09^{+0.31}_{-0.28}$

In combination with Run-1 results, but experiments observe this decay mode (ATLAS 6.40, CMS 5.90) independently

• CMS also published measurement in W/Z+H channel (CMS-PAS-HIG-18-007)

H → bb (1)

- Searches started at LEP (imposed m(H) > 114.4 GeV), then continued at Tevatron (observed at 2.8σ)

 ^{ATLAS}
 ^{Data}
 ^{Data}
- Most sensitive channel @ LHC: W/Z+H
 - key elements are b-tagging and dijet invariant mass reconstruction
 - background significantly reduced at high $p_T(W/Z)$
 - three main categories (0-,1- and 2-leptons), ^{bi 1.5} further split according to Njets (2, 3)
 - ATLAS uses BDT in further analysis

arXiv:1808.08238

NTIHEP, 2018

H → bb (2)

- W/Z+H (\rightarrow bb) analysis
 - cross-check with standard candle
 W/Z+Z(→ bb)
 - event excess clearly seen in dijet invariant mass spectrum
 - combined Run-1 + Run-2 results
 - ATLAS: $\mu = 1.16^{+0.27}_{-0.25}$ significance 4.9 σ (arXiv:1808.08238)
 - CMS: μ=1.01±0.23
 significance 4.8σ (arXiv:1808.08242)

H → bb (3)

- Searches also performed in ggF (boosted topology), VBF and tTH production modes (see backup slides)
- Combined $H \rightarrow b\overline{b}$ results

significances: 5.4σ (ATLAS), 5.6σ (CMS)

 $H \rightarrow b\overline{b}$ decay mode observed independently by both experiments

New !!

 $\leq 5.1 \text{ fb}^{-1} (7 \text{ TeV}) + \leq 19.8 \text{ fb}^{-1} (8 \text{ TeV}) + \leq 77.2 \text{ fb}^{-1} (13 \text{ TeV})$

H → μμ (1)

- ATLAS (ATLAS-CONF-2018-026)
 - selects 2 isolated muons with $p_T > 15$ GeV, low MET, b-veto
 - then use BDT to select VBF-like events (2 cats.), remaining events split into 6 cats. (according to $p_T(\mu\mu), n_\mu$)
- CMS (arXiv:1807.06325)
 - BDT is built using input variables uncorrelated to di-muon invariant mass: p_T(μμ), n(μμ), Δn(μμ), Δn(jj), two highest di-jet masses, ...
 - split then into 14 categories

H → μμ (2)

- No signal observed yet, setting the upper limits on the production cross-section x BR @ 95% CL:
 - ATLAS: 2.1 x SM (ATLAS-CONF-2018-026)
 - CMS: 2.64 x SM (arXiv:1807.06325)

Both experiments are approaching the sensitivity of the SM prediction

ttH production (1)

- Higgs coupling to top-quark is the largest Yukawa coupling to fermions
 - sensitive to new physics
- Complex final states, depend on the Higgs boson decay mode: higher S/B
 - $H \rightarrow \gamma \gamma$, $H \rightarrow ZZ^* \rightarrow 4\ell$
 - multilepton
 - $H \rightarrow WW \rightarrow \ell v \ell v$ or $\ell v q q$
 - $H \rightarrow ZZ^* \rightarrow \ell \ell v \bar{v} \text{ or } \ell \ell q \bar{q}$
 - $H \rightarrow T_{lep}T_{lep}$
 - $H \rightarrow b\overline{b}$

higher $\sigma \times BR$

CMS-PAS-HIG-17-031

tTH production (2)

• Combination of ttH measurements Phys.Lett.B 784 (2018) 173

Phys.Rev.Lett. 120 (2018) 231801

- Observation of tTH production
 - ATLAS Run-1+Run-2: 6.3σ (5.1σ expected)
 - CMS Run-1+Run-2: **5.2σ** (4.2σ expected)

Combined measurements (1)

ATLAS-CONF-2018-031

 $\mu = 1.17 \pm 0.10$

Combined signal strength:

 $\mu = 1.13^{+0.09}_{-0.08}$

NTIHEP, 2018

Combined measurements (2)

- Combined fit with coupling modifiers $(\kappa_{i}^{2} = \sigma_{i}/\sigma_{i,SM}, \kappa_{f}^{2} = \Gamma_{f}/\Gamma_{f,SM})$
 - provide constraints on new physics phenomena (2HDM, simplified MSSM)

ATLAS-CONF-2018-031

CMS-PAS-HIG-17-031

Other Higgs-related searches

- Double Higgs (HH $\rightarrow b\overline{b}b\overline{b}, b\overline{b}\tau\tau, b\overline{b}\gamma\gamma, ...)$
 - both experiments provided upper limits
 - ATLAS observes: $\sigma < 6.4 \cdot \sigma_{SM}$ (ATLAS-CONF-2018-043)
 - CMS observes: $\sigma < 21.8 \cdot \sigma_{SM}$ (CMS-PAS-HIG-17-030)
- ... as well as many non- or beyond-SM searches, e.g.
 - $H \rightarrow invisible$
 - lepton flavour violating decays ($H \rightarrow e_T, H \rightarrow \mu_T$)
 - searches for additional Higgs boson(s), both neutral and charged

Conclusions

- Higgs boson interaction with gauge bosons already established in Run-1, now entering the precision measurement era
- Yukawa couplings to fermions $(t\overline{t}, b\overline{b}, \tau\tau)$ observed.
- All major Higgs production modes also observed
 Everything consistent with Standard Model so far

 Next challenges include couplings to µµ, cc as well detailed crosssection measurements

Eagerly awaiting complete 2018 data-set and full Run-2 results

BACKUP

Simplified template cross-section (1)

- Common ATLAS+CMS framework. It uses the fiducial crosssections as measured for specific production modes on the input and enables to obtain global combinations across all decay channels.
- Stage O: basically the splitting according to the production mechanism (ggF, VBF, VH, tTH, bbH, tH)
- Stage 1 defines further binning in Higgs $p_{\scriptscriptstyle T}$ and/or associated jet topology

Simplified template cross-section (2)

$H \rightarrow \gamma \gamma$

- Search for isolated high-p_T photons with invariant mass ~ 125 GeV

 $m_{\gamma\gamma} = \sqrt{2 E_1 E_2 (1 - \cos \theta_{12})}$

- Measurements are performed in several categories, targetting
 - different Higgs production (ggF, VBF, W/Z+H, top) and decay modes of the associated particles (W, Z, top)

$H \rightarrow ZZ \rightarrow 4\ell$

- Search for isolated high-p_ electrons/muons: 4e, 2e2µ, 2µ2e, 4µ
 - leading pair's invariant mass in m(Z) window, subleading pair $m_{34} < 115$ GeV
 - tracks coming from the primary vertex
 - in case of W/Z+H and $t\bar{t}H$ production modes more leptons might be present
- Reconstruct the invariant mass of the four leptons
- Measurements are performed again in several categories

$H \rightarrow \tau \tau$ mass reconstruction

- Invariant mass cannot be properly reconstructed due to 2-4 neutrinos
- Collinear mass approximation
 - assumes all T-decay products are collinear

 $\vec{p}^{miss} = k_1 \vec{p}_{vis1} + k_2 \vec{p}_{vis2}$

- Missing Mass Calculator (ATLAS)
 - takes into account the probability of the angular distribution between the T-decay products (NIM A 654 (2011))
 - better resolution than collinear mass, critically depends on the MET resolution

• SVFIT (CMS)

 similar combination of MET and visible Tdecay products (J.Phys.Conf.Ser. 513 (2014))

H → bb

- Search for VBF production mode in ATLAS in three categories (Phys.Rev.D 98 (2018) 052003):
 - all hadronic (2 central jets, 4 central jets), photonassociated channel (sensitive only to VBF)
 - selection based on BDT discriminator, 9 SR in total
 - simultaneous fit to m(bb) applied, results $\mu = 2.5^{+1.4}_{-1.3}$ (inclusive), $\mu = 3.0^{+1.7}_{-1.6}$ (VBF)
- Similar studies published by CMS:
 - VBF mode (CMS-PAS-HIG-16-003)

 $\mu = 1.3^{+1.2}_{-1.1}$

 inclusive production in high-boosted topology p_T(H) > 450 GeV (targets ggF mode) measured with 1.5σ significance (Phys.Rev.Lett. 120 (2018) 071802)

