THE GEORGE WASHINGTON UNIVERSITY

WASHINGTON, DC

MUSE and Proton Radius Puzzle

Ievgen Lavrukhin

on behalf of the MUSE Collaboration

Introduction: Proton Radius

<u>Lepton – Nucleon Scattering:</u>

$$\frac{d\sigma}{d\Omega} = \frac{d\sigma}{d\Omega_{Mott}} \cdot \frac{\varepsilon \cdot G_E^2(Q^2) + \tau \cdot G_M^2(Q^2)}{\varepsilon(1+\tau)} \cdot \left(1 + \sum_{NL} \delta_{NL}\right)$$
$$\left\langle \langle r_E^2 \rangle = -6 \frac{dG_E^p(Q^2)}{dQ^2} \Big|_{Q^2 \to 0}$$

Hydrogen Spectroscopy:

[Carl E. Carlson, The Proton Radius Puzzle, arXiv:1502.05314v1]

$$E = -\frac{Ryd}{n^2} + \Delta E_{finite_size} + \Delta E_{QED}$$
Point-like proton

$$\Delta E_{finite_size} = \frac{2\pi\alpha}{3} r_E^2 |\Psi(0)|^2$$
Atomic wave
function at origin

Introduction to Proton Radius Puzzle:

The Proton Radius Puzzle : Discrepancy between muonic hydrogen spectroscopy results and electron measurements. (First released \rightarrow 2010)

Status of Proton Radius Puzzle (PRP):

Possible reasons of (PRP):

- The μ*p* (spectroscopy) result is wrong:
 - Discussion about theory and extracting the proton radius from muonic
 - Lamb shift measurement
- The *ep* (spectroscopy) results are wrong:
 - Accuracy of individual Lamb shift measurements?
 - \checkmark Rydberg constant could be off by 5 σ
- The *ep* (scattering) results are wrong:
 - ✓ Fit procedures not good enough
 - \checkmark Q² not low enough.
- Proton structure issues in theory
 - Off-shell proton in two-photon exchange, leading to enhanced effects differing between μ and e Hadronic effects different for μp and ep
- Physics beyond Standard Model
 - \checkmark µ and *e* Lepton universality violation.

Possible reasons of (PRP):

- The μ*p* (spectroscopy) result is wrong:
 - Discussion about theory and extracting the proton radius from muonic
 - Lamb shift measurement
- The *ep* (spectroscopy) results are wrong:
 - Accuracy of individual Lamb shift measurements?
 - \checkmark Rydberg constant could be off by 5σ
- The *ep* (scattering) results are wrong:
 - ✓ Fit procedures not good enough
 - \checkmark Q² not low enough.
- Proton structure issues in theory
 - Off-shell proton in two-photon exchange, leading to enhanced effects differing between μ and e Hadronic effects different for μp and ep
- Physics beyond Standard Model
 - ✓ μ and *e* Lepton universality violation.

MUSE will test this!

MUon Scattering Experiment (MUSE).

r _p (fm)	electrons	muons
spectroscopy	0.8758 ±0.0077	0.8409 ±0.0004
scattering	0.8770 ±0.0060	????

What MUSE proposes:

Simultaneous measurement of e^-p ; μ^-p and e^+p ; μ^+p elastic scattering reactions:

- Simultaneous determination of the Proton Radius in both *ep* and μ*p* scatterings.
- 2. Direct comparison of *ep* and μp scatterings at sub-percent level precision.
- 3. Extract **TPE effects** from the e^-p/e^+p and μ^-p/μ^+p ratios.
- 4. Test of Lepton universality.

MUSE Collaboration:

Funded by 5 Agencies

\sim 63 MUSE collaborators from 24 institutions in 5 countries:

A. Afanasev^a, A. Akmal^b, J. Arrington^c, H. Atac^d, C. Ayerbe-Gayoso^e, F. Benmokhtar^f, N. Benmouna^b, N. Bern^b, J.C. Bernauer^g, E. Brash^h, W.J. Briscoe^a, T. Caoⁱ, D. Ciofi^a, E. Cline^j, D. Cohn^k, E.O. Cohen^l, C. Collicott^a, K. Deiters^m, J. Diefenbachⁿ, B. Dongwiⁱ, E.J. Downie^a, L. El Fassi^o, S. Gilad^g, R. Gilman ^j, K. Gnanvo^p, R. Gothe^q, D. Higinbotham^r, Y. Ilieva^q, M. Jones^r, N. Kalantariansⁱ, M. Kohlⁱ, B. Krusche^s, G. Kumbartzki ^j, I. Lavrukhin^a, L. Li^q, J. Lichtenstadt^l, W. Lin ^j, A. Liyanageⁱ, N. Liyanage^p, W. Lorenzon^t, Z.-E. Meziani^d, P. Monaghan^h, K.E. Mesick^u, P. Mohan Murthy^g, J. Nazeerⁱ, T. O'Connor^c, C. Perdrisat^e, E. Piasetzsky^l, R. Ransome ^j, R. Raymond^t, D. Reggiani^m, P.E. Reimer^c, A. Richter^v, G. Ron^k, T. Rostomyan ^j, A. Sarty^w, Y. Shamai^l, N. Sparveris^d, S. Strauch^q, V. Sulkosky^p, A.S. Tadepalli ^j, M. Taragin^x, and L. Weinstein^o

Technical Design Report: arXiv:1709.09753 [physics.ins-det]

^aGeorge Washington University, ^bMontgomery College, ^cArgonne National Lab, ^dTemple University, ^eCollege of William & Mary, ^f Duquesne University, ^gMassachusetts Institute of Technology, ^hChristopher Newport University, ⁱ Hampton University, ^j Rutgers University, ^kHebrew University of Jerusalem, ^ITel Aviv University, ^mPaul Scherrer Institut, ⁿJohannes Gutenberg-Universität, ^oOld Dominion University, ^pUniversity of Virginia, ^qUniversity of South Carolina, ^rJefferson Lab, ^sUniversity of Basel, ^tUniversity of Michigan, ^uLos Alamos National Laboratory, ^vTechnical University of Darmstadt, ^wSt. Mary's University, ^xWeizmann Institute (Oct. 2016)

Paul Scherrer Institute (PSI):

X-ray laser: SwissFEL

Proton accelerator: World's most powerful 590 MeV Proton beam (2.2 mA, 1.3 MW beam, 50.6 MHz RF frequency)

e[±], μ[±], π[±] in Secondary beam-lines

Synchrotron: Swiss Light Source (SLS), with 2.4 GeV photons

MUSE: PiM1 Beam line.

MUSE: Detector Setup.

MUSE: Trigger.

Trigger Logic:

(e OR μ) AND (no π) AND (scatter) AND (no veto) PID is the Hardest Part

MUSE: Trigger (PID)

MUSE: Trigger (Scattering Event)

Front	Exact Back	3	2	1	Back	1	2	3
0	2.00		0.00	1.00	2.00	3.00	4.00	5.00
1	3.35	0.00	1.00	2.00	3.00	4.00	5.00	6.00
2	4.71	2.00	3.00	4.00	5.00	6.00	7.00	8.00
3	6.06	3.00	4.00	5.00	6.00	7.00	8.00	9.00
4	7.41	4.00	5.00	6.00	7.00	8.00	9.00	10.00
5	8.76	6.00	7.00	8.00	9.00	10.00	11.00	12.00
6	10.12	7.00	8.00	9.00	10.00	11.00	12.00	13.00
7	11.47	8.00	9.00	10.00	11.00	12.00	13.00	14.00
8	12.82	10.00	11.00	12.00	13.00	14.00	15.00	16.00
9	14.18	11.00	12.00	13.00	14.00	15.00	16.00	17.00
10	15.53	13.00	14.00	15.00	16.00	17.00	18.00	19.00
11	16.88	14.00	15.00	16.00	17.00	18.00	19.00	20.00
12	18.24	15.00	16.00	17.00	18.00	19.00	20.00	21.00
13	19.59	17.00	18.00	19.00	20.00	21.00	22.00	23.00
14	20.94	18.00	19.00	20.00	21.00	22.00	23.00	24.00
15	22.29	19.00	20.00	21.00	22.00	23.00	24.00	25.00
16	23.65	21.00	22.00	23.00	24.00	25.00	26.00	27.00
17	25.00	22.00	23.00	24.00	25.00	26.00	27.00	
			3 or 4	5 or 6				
Anything >0.2 and <0.8 is defined as in the middle								

MUSE: Muon Decay and Moeller

Simulation for 153 MeV/c beam:

Muon Decays in flight can be removed with TOF measurements:

Requirements: ≤ 100 ps rms TOF for reaction ID

Moeller/Bhabba events can be effectively suppressed with BM acting as a Moeller-VETO

TOF Beam Momentum Measurement

We can determine momentum of **muons** and **pions** from time of flight (TOF) distribution between two fixed detectors.

This method doesn't work for relativistic electrons!

TOF Beam Momentum Measurement

2 TOF measurements with 50 cm difference in detector spacing, compared to Geant4 (Horizontal scale has arbitrary offset)

Preliminary data analysis determine $p_{\pi}(p_{\mu})$ to 0.2%(0.3%)

Requirements: $\sigma_{\tau} \le 150 ps; \epsilon \ge 99\%$

Meet requirements!

Paddle Time Resolution				
#1	65 ps			
#2	66 ps			
#3	62 ps			
#4	77 ps			
#5	68 ps			
#6	95 ps			
#7	97 ps			
#8	97 ps			
#9	91 ps			
#10	95 ps			
#11	106 ps			
#12	64 ps			
#13	68 ps			
#14	70 ps			
#15	61 ps			
#16	61 ps			

MUSE: GEM

- 70 μm (100 μm) spatial resolution
- ε = **97 99%** (98.0%)

Meet requirements!

MUSE: Veto

- Eliminate upstream scattering & beam decays
- Completed and arrived at PSI on July 2

Parameter	Performance Requirement	Achieved		
Time Resolution	1 ns / plane	not attempted; easy		
Efficiency	99%	not attempted; easy		
Positioning	$\approx\!\!1~\mathrm{mm},\approx\!\!1~\mathrm{mr}$	not attempted; easy		
Rate Capability	$1~\mathrm{MHz}$ / plane	not attempted; easy		

MUSE: Beam Monitor

- 3 BM prototypes successfully tested: 3 mm thick x 300 mm long x 12 mm wide BC404 + S13360-3075PE; S13360-3050PE; AdvanSiD
- Best result: S13360-3075PE:

*σ*_{*T*} = 59*ps*; ε≥ 99.9%

Meet requirements!

MUSE: SPS (TOF and scattering event)

Parameter	Performance Requirement	Achieved	
Time Resolution	≈60 ps / plane	√ 55 ps	
Efficiency	99%, $\ll 1\%$ paddle to paddle	\checkmark 99%, paddle to paddle not	
	uncertainty	attempted, moderate	
Positioning	≈1 mm, ≈1 mr	not attempted; easy	
Rate Capability 0.5 MHz / paddle		✓ 1 MHz	

Meet requirements!

MUSE: STT

- STT Frame is ready.
- Straws production will be done in middle of October 2018.
- Detector will be ready for December 2018 beamtime.

MUSE: Target

	Para	ameter	Performance Requirement	Achieved?	
	Liquid hydrogen		maintain liquid hydrogen-filled	not attempted;	
			cell at T ${\approx}19$ k and P ${\sim}1$ atm	moderate	
	Cool d	own time	< 3 days	✓ achieved;	
				< 2 hours!	
	Beam entr	ance window	>6 cm	✓ achieved;	
				easy	
	Exit w	indow(s)	$20^{\circ} < \theta < 100^{\circ};$	✓ achieved;	
	(One conti	nuous or two	$\phi=0^\circ\pm45^\circ$ at $\theta=60^\circ$	challenging	
	symmetr	ic on beam	beam up-down and		
	left and l	beam right)	beam left-right symmetry		
			- 0.17		
Π	Condense	300 -	level sensor Con Con	denser temp 1 denser temp 2	
t i	i	250 -		Jet temp - 0.16	
				- 0.15	
		(¥) 200 -		- 0.14 <u>g</u>	
	LH ₂ cell	₽ 150		- 0.13	
		100 -		- 0.12	
	Empty	50 -			
	cell			- 0.11	
		10	Time (min)	-	
	C target	Me	et requireme	nts! 2	

Platform Design

MUSE: Detector Summary

Detector	ctor $\sigma_T(ps) / \sigma_S(\mu m)$		Material Thickness	
1 BH Plane	\sim 70 ps	> 99.5	2 mm BC404	
2-4 BH Planes	50 – 35 ps	> 99.5	4 – 8 mm BC404	
GEMs	70 μ m	pprox 98	0.5% Radiation Length	
VETO	pprox 200 ps	> 99	4 mm BC404	
BM	59 ps	pprox 99.9	3 mm BC404	
STT	120 µ <i>m</i>	pprox 99	30 μ <i>m</i> mylar	
SPS	55	> 99	3 – 6 cm BC404	

Preliminary! Meet all requirements!

Meanwhile, additional improvement and testing is in the progress!

MUSE: Expectations.

- Charge radius extraction limited by systematics, fit uncertainties.
- Many uncertainties are common to all extractions in the experiments, cancel in e+/e-, μ+/μ-, and μ/e comparisons.

Proton Radius difference:

Two-Photons Exchange (ep only):

Timeline:

Acknowledgement:

The MUon Scattering Experiment collaboration (MUSE):

- R. Gilman (Contact person),¹ E.J. Downie (Spokesperson),² G. Ron (Spokesperson),³
 - S. Strauch (Spokesperson),⁴ A. Afanasev,² A. Akmal,⁵ J. Arrington,⁶ H. Atac,⁷
- C. Ayerbe-Gayoso,⁸ F. Benmokhtar,⁹ N. Benmouna,⁵ J. Bernauer,¹⁰ A. Blomberg,⁷
- W. J. Briscoe,² D. Cioffi,² E. Cline,¹ D. Cohen,³ E. O. Cohen,¹¹ C. Collicott,¹²
- K. Deiters,¹³ J. Diefenbach,¹² B. Dongwi,¹⁴ D. Ghosal,¹⁵ A. Golossanov,² R. Gothe,⁴
- D. Higinbotham,¹⁶ D. Hornidge,¹⁷ Y. Ilieva,⁴ N. Kalantarians,¹⁴ M. Kohl,¹⁴ B. Krusche,¹⁵
 - G. Kumbartzki,¹ I. Lavrukhin,² L. Li,⁴ J. Lichtenstadt,¹¹ W. Lin,¹ A. Liyanage,¹⁴
 - W. Lorenzon,¹⁸ K. E. Mesick,¹⁹ Z.-E. Meziani,⁷ P. Mohanmurthy,¹⁰ P. Moran,⁷
- J. Nazeer,¹⁴ E. Piasetzsky,¹¹ R. Ransome,¹ R. Raymond,¹⁸ D. Reggiani,¹³ P.E. Reimer,⁶
 A. Richter,²⁰ T. Rostomyan,¹ P. Roy,¹⁸ A. Sarty,²¹ Y. Shamai,²² N. Sparveris,⁷
 N. Steinberg,¹⁸ I. Strakovsky,² V. Sulkosky,²³ A.S. Tadepalli,¹ and M. Taragin²⁴

Acknowledgement:

Thank you for your attention!