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Color dipole/ k, -factorization approach
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Color dipole representation of forward amplitude:
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@ impact parameters and helicities of high-energy g and g are conserved during the interaction.

@ scattering matrix is “diagonal” in the color dipole representation.



When do small dipoles dominate ?

@ the photon shrinks with @2 - photon wavefunction at large r:
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@ the integrand receives its main contribution from (M), ~ 2my)
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@ a large quark mass (bottom, charm) can be a hard scale even at Q? > 0.
@ for small dipoles we can approximate
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@ for ¢ > 1 we then obtain the asymptotics
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@ probes the gluon distribution, which drives the energy dependence.

o From DGLAP fits: xg(x, 12) = (1/x) #*) with A(1i2) ~ 0.1+ 0.4 for y2 = 1 + 102GeV?2,



Diffractive processes on the nuclear target
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diffractive processes on nuclear targets:
@ coherent diffraction — nucleus stays in the ground state
@ complete breakup of the nucleus, final state free protons & neutrons
@ intact nucleus, but an excited state

@ partial breakup of the nucleus, a variety of possible fragments

they all have in common:

@ large rapidity gap between vector meson and nuclear fragments
@ lack of production of additional particles




Off-forward amplitude

Amplitude at finite transverse momentum transfer A
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Incoherent diffraction: summing over nuclear states
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Closure in the sum over nuclear final states:
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Only ground state nuclear averages:
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Nuclear averages as in Glauber & Matthiae
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in the limit of the dilute uncorrelated nucleus all we need are:
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Multiple scattering expansion of the incoherent cross section
Diffraction cone of the free nucleon: B < Rf‘
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Multiple scattering expansion for A2 Rﬁ >1
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nuclear absorption




Dipole cross section from Xfitter

BGK-form of the dipole cross section
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@ the soft ansatz, as used in the original BGK model
xg(x, 13) = Agx (1 — x)C%,
@ the soft + hard ansatz

xg(x, 13) = Agx (1 — x)%€ (1 + Dgx + Egx?),

@ fit I: BGK fit with fitted valence quarks for o, for HIZEUS-NC data in the range
Q? > 3.5 GeV2 and x < 0.01. NLO fit. Soft gluon.

o fit Il: BGK fit with valence quarks for o, for HIZEUS-NC data in the range Q2 > 0.35 GeV?2
and x < 0.01. NLO fit. Soft + hard gluon.

@ fits from A. tuszczak and H. Kowalski, Phys. Rev. D 95 (2017).




Further input to our calculation

Overlap of light-cone wave functions
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@ “boosted Gaussian” wave functions as in Nemchik et al. ('94)

M2 R2 _
¥(z,r) < z(1 — z) exp Q 2z(1 z)r2j|

T 8z(1—z) R?

@ parameters mq, R & normalization as in Kowalski et al. (2006) for J/v and Cox et al. (2008)
for T.

v

diffractive slope on a free nucleon:

B = By + 4o log(W /Wp) with Wo = 90 GeV, and o/ = 0.164 GeV ~2
We take By = 4.88 GeV 2 for J/+ and By = 3.68 GeV~2 for T.




Diffractive incoherent photoproduction on the nuclear target
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—t = A? | single scattering has the same diffractive slope as on the free nucleon, multiple
scatterings have smaller slopes.




Diffractive incoherent photoproduction on the nuclear target
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Diffractive incoherent photoproduction on the nuclear target
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Diffractive incoherent photoproduction on the nuclear target
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Incoherent difffraction at low AZ

at low A? the single scattering dominates, and one should rather use its exact form:

doincon 1 2 2 1 2 .
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vanishes for A2 Ri >1
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nuclear absorption

If we were to neglect intranuclear absorption, we would obtain for small AZ:
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Diffractive processes on the nuclear target
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@ solid line: exact single scattering

nuclear correlations may play a role.
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Diffractive processes on the nuclear target
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Corrections for real part and skewedness

numerically important corrections:

@ real part of the diffractive amplitude:

dlog (<vwa<x, r)|v>>
Olog(1/x)

@ amplitude is non-forward also in the longitudinal momenta. Correction factor (Shuvaev et al.
(1999)):
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@ apply K-factor to the cross section:

K= (1 + p2(X)) : Rszkewed .

Note: absorption factor is really:
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so that we neglect a real part in the absorption exponentials




Incoherent diffraction in ultraperipheral heavy ion collisions
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Cross section for AA collision uses Weizsacker-Williams photon fluxes:

doincon(AA — VAX)
dy

= ny/a(2+)Tincon (W) + ny/a(2— )Gincon (W-) ,

my
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NN




From ultraperipheral to peripheral nuclear collisions

Recently, the ALICE collaboration has observed a large enhancement of J/1) mesons carrying very
small pr < 300 MeV in the centrality classes corresponding to peripheral collisions.

Centrality class 70 <+ 90%:
13fm < b < 15fm, photon fluxes by Contreras Phys. Rev. C 96 (2017)

doincon (AA — VX|70 + 90%)
dy

cut

= nW/A(z+|70 =+ 90%)0incon (W |pT < PT

+  ny/a(z=170 +90%)Tincon (W-|p7 < peit)
~ 15ub,

The ALICE measurement is [Phys. Rev. Lett. 116 (2016)]:

do(AA — VX|70 + 90%; 2.5 < |y| < 4.0)
dy

=59+ 11+8ub.

For an estimate of the coherent contribution, see: M. Ktusek-Gawenda and A. Szczurek, Phys.
Rev. C 93 (2016)



VM photoproduction from nucleon to nucleus:

VM = J/, 0, T

—
P
Fla, k) = 0G(x, k)0 log k2

@ for heavy nuclei rescattering/absorption effects are enhanced by the large nuclear size
@ gq rescattering is easily dealt with in impact parameter space

@ the final state might as well be a (virtual) photon (total photoabsorption cross section) or a
qg-pair (inclusive low-mass diffraction).

@ Color-dipole amplitude

(Al Tr[Sq(b)Sk (b + N]IA)

Fbon) =1 = A

1 exp[-gau, r)Ta(b)]

@ inclusion of higher Fock states is possible (shadowing due to large mass diffractive states), and
relates to gluon shadowing.



Coherent diffractive production of J/W,(2S), T on 2% pPp
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@ left panel A. Cisek, WS, A. Szczurek Phys. Rev C86 (2012) 014905.

@ Ratio of coherent production cross section to impulse approximation
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The putative gluon shadowing: /R.on
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@ an extraction of v/Rcon from ALICE PbPb — J/1yPbPb data by Guzey et al. (2013).
in the collinear approach: “gluon shadowing”: Reon ~ [ga(x, @?)/(A - gn(x, @*))]%.
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o the putative “gluon shadowing”: Rg = 4/ Rcon(x ~ 1073) ~ 0.7.

©

for illustration: Rg(x, m2) = ga(x, m2)/(A - gn(x, m?)) from popular DGLAP fits:
EPS09: Rg(103, m2) ~ 0.6, EPS08: R¢(1073, m2) ~ 0.3

@ Inclusive dijet observables depend on unintegrated nuclear glue nonlinearly.

<



Conclusions

@ Coherent diffraction on the nucleus is a sensitive probe of the (unintegrated) gluon distribution
of the target nucleus. Rescattering/saturation effects entail that the unintegrated glue enters
inclusive dijet observables nonlinearly.

@ “gluon shadowing” is included via the rescattering of higher QQg Fock states. The effective
“gluon shadowing” ratio Rg(x, m%) ~ 0.74 = 0.62. For x ~ 1072 +10~°. ALICE data appear
to indicate somewhat stronger effect Rg(10~3, m2) + 0.6.

@ we have presented the Glauber-Gribov theory for incoherent photoproduction of vector mesons
on heavy nuclei within the color dipole approach.

@ We have developed the multiple scattering expansion which involves matrix elements of the
operator o"(x, r) exp[—%a(x7 r)Ta(b)]. We performed calculations for J/¢ and T
photoproduction. Multiple scatterings lead to extended tails in the t-distributions.

@ multiple scattering terms are only important at large t, beyond the free-nucleon diffraction
cone.

@ We use the dipole cross section obtained in the Xfitter framework. Our calculations are in
agreement with data from ALICE in ultraperipheral lead-lead collisions at /sNNy = 2.76 TeV.

@ Incoherent diffractive production also contributes to the J/v yield in peripheral inelastic
heavy-ion collisions. Rough estimates using photon fluxes of Contreras give about ~ 25% of
the cross section measured by ALICE.

o In the future: extension to light vector mesons, as well as to finite Q2 (electron-ion collider).
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