Изучение пиксельных арсенид галлиевых детекторов на основе микросхемы Timepix

П. Смолянский

НЭОВП ЛЯП

22.12.2017

Основы п/п детекторов

Арсенид галлия как детекторный материал

- GaAs третий по распространенности п/п материал после кремния и германия
- GaAs, выращенный методом Чохральского (LEC-GaAs), ограничен для применения в детекторной тематике из-за низкого удельного сопротивления, высокого уровня шумов и низкой ССЕ
- Технология компенсации арсенида галлия хромом (GaAs:Cr), разработанная в TГУ, позволила преодолеть эти ограничения ($\rho \sim 10^9$ Ом·см, $\tau_e \sim 10$ нс)

 применим для производства детекторов частиц

- Z(GaAs)~32 vs Z(Si)=14 => более высокая эффективность регистрации гамма-квантов
- высокая радиационная стойкость при комнатной температуре (до 1.5 МГр)

Medipix

Medipix – семейство гибридных пиксельных микросхем считывания:

- Разработаны в CERN коллаборацией Medipix
- Пиксельная матрица: 256х256 квадратных пикселей размером 55 мкм
- Физические размеры микросхемы: 16.1×14.1×0.7 mm³
- Две основных ветви развития микросхем Medipix:
 - Medipix счет одиночных фотонов с возможностью установки до 8 порогов
 - Тітеріх основан на временных измерениях сигнала (ТОА, длительность сигнала ~ энергии частицы)
- Используемые материалы для сенсоров: Si, GaAs:Cr, CdTe, CZT

Счет одиночных фотонов

Интегральный подход

- Аналоговый сигнал
- Шум + сигнал

Счет одиночных фотонов

- Цифровой сигнал
- Шум отсекается

Метод Time-over-Threshold

- Измерение длительности сигнала на уровне порога вместо измерения амплитуды
- Длительность спада сигнала контролируется І_{krum} ЦАП

• Значение [TOT] => [c] : TOT / f, где f ∈ (2, 100) МГц

Первый детектор GaAs:Cr + Medipix2

Nuclear Instruments and Methods in Physics Research A 633 (2011) S103-S107

Characterisation of a GaAs(Cr) Medipix2 hybrid pixel detector

Lukas Tlustos ^{a,*}, Georgy Shelkov ^b, Oleg P. Tolbanov ^c

^a CERN, PH/MIC/ESE, CH-1211 Geneva 23, Switzerland

^b JINR, Dubna, Russia and Moscow Institute of Physics and Technology, Moscow, Russia
^c Siberian Physical-Technical Institute of Tomsk State University. Tomsk. Russia

2011

Fig. 8. Flatfield corrected image of the head of an anchovy.

Требования к п/п детекторам изображений

- Высокая эффективность регистрации гамма-квантов (> 10 кэВ)
- Низкие темновые токи
- Высокая эффективность сбора заряда
- Однородность материала по площади
- Стабильность характеристик во времени
- Высокое пространственное и энергетическое разрешение

Эффективность регистрации гамма-квантов GaAs vs Si

- Z(GaAs)~32 vs Z(Si)=14 => более высокая эффективность регистрации гамма-квантов
- Сравнение для Timepix детекторов с Si и GaAs:Cr сенсорами толщиной 500 мкм
- В 4 раза большая эффективность на 25 кэВ

Вольт-амперные характеристики

- \bullet ВАХ для диапазона от $-10~^o$ С до 70 o С
- Значения темнового тока в рамках допустимых значений для Timepix (10 нА/пиксель)
- \bullet Удельное сопротивление при $20~^o{
 m C}$: $\sim 10^8~{
 m Om}$ · см

Эффективность сбора заряда (ССЕ)

- Измерения на падовом детекторе 4.5 \times 4.5 \times 0.63 mm^3
- $CCE = \frac{Q_{meas}}{163.4*630}$ (для МИЧ в GaAs: 0.7 кэВ/мкм => 163.4 e^-h^+ пар/мкм)
- ССЕ практически не меняется с ростом температуры (0.075 %/°С)

Транспортные характеристики носителей заряда

• Классическое уравнение Хехта:

$$Q(U) = Q_0 \cdot \frac{\mu\tau}{d^2} \cdot U \cdot (1 - e^{-\frac{d^2}{\mu\tau U}})$$

- Используется рентгеновское характеристическое излучение (РХИ) Zr фольги
- Гамма-кванты, соответствующие линии K_{α} = 15.7 кэВ имеют длину свободного пробега в GaAs <25 мкм => большая часть взаимодействий произойдет вблизи общего электрода
- Среднее значение зарегистрированного фотопика 15.7 кэВ определено для каждого пикселя при различных напряжениях смещения
- Полученные зависимости «Положение пика vs напряжение смещения» для каждого пикселя были фитированы модифицированным уравнением Хехта для случая малых пикселей

22.12.2017

12 / 36

Уравнение Хехта для детекторов с малыми пикселями

В пиксельных детекторах с размером пикселя 55 мкм эффект малого пикселя существенен и классическое уравнение Хехта неприменимо. Модифицированное уравнение [arxiv:1701.03459]:

Распределение mu*tau по площади

$\mu_e au_e = 1.1 \cdot 10^{-4} \; cm^2/V$, RMS = 7.5 % по матрице

Однородность отклика по площади

• RMS сократилось в 3 раза после коррекции на открытое поле

Стабильность детектора в режиме ТОТ

- Timepix + GaAs:Cr sensor (1000 μ m) при $T_{stab} = 20 \pm 0.2^0 C$ в режиме ТОТ
- облучение источником ^{241}Am , как меняется положение линии E_{γ} =59.5 кэВ во времени?
- ~ 1 год непрерывных измерений

- Средняя позиция пика увеличилась менее, чем на промиле за год
- 33 новых «мертвых» пикселя за год

Стабильность работы в счетном режиме

П. Смолянский (НЭОВП ЛЯП)

22.12.2017 18 / 36

Температурная зависимость

В счетном режиме

Энергетическая калибровка в режиме ТОТ

Для прямого измерения энергии, выделившейся в сенсоре детектора в результате прохождения частицы, используется режим Time-over-Threshold

Энергетическая калибровка: установление соответствия между энергией поглощенных частиц Е и длительностью импульса (в единицах ТОТ), создаваемого прошедшей частицей в канале каждого пикселя

- Попиксельная калибровка
- Обобщенная калибровка

П. Смолянский (НЭОВП ЛЯП)

Смоделированный спектр характеристического излучения тантала

- Энергетического разрешения Timepix детектора недостаточно для разделения K_{α} , K_{β} спектральных линий => неточность калибровки
- Моделирование спектра GaAs:Cr-Timepix детектора с учетом разрешения и эффективности детектора

Спектр измеренный детектором Canberra

Функция для фита попиксельных спектров

Фитирование спектральных пиков в каждом пикселе с помощью функции распределения Гаусса дает некорректные результаты

Решение – комбинация гауссиана с квадратичным полиномом:

$$F = \begin{cases} K \cdot \exp\left(-\frac{(ToT - \mu)^2}{2\sigma^2}\right), & \text{если } ToT > \mu \\ K \cdot \exp\left(-\frac{(ToT - \mu)^2}{2\sigma^2}\right) + a \cdot ToT^2 + b \cdot ToT + c, & \text{если } ToT < \mu \end{cases}$$

Дополнительное условие, накладываемое на квадратичный полином: $a\mu^2 + b\mu + c = 0$.

Распределение положения фитируемого пика

- RMS ${\sim}5.4$ %
- Хорошо различимы области с меньшим значением ССЕ

Результаты попиксельной калибровки

- Энергетическое разрешение увеличилось вдвое на 57 кэВ по сравнению с обобщенной калибровкой
- σ: 12 % @ 20 кэВ, 8 % @ 57 кэВ
- Точность калибровки: 0.5 %

Энергетическое выравнивание порогов (equalization)

- Коэффициенты усиления электроники пикселей отличаются
- Разброс порогов RMS = 235 e⁻ => RMS=35 e⁻
 путем шумовой эквализации
- При работе в счетном режиме при порогах » уровня шумов процедура выравнивания порогов по краю шумового спектра становится неэффективной

Энергетическая эквализация:

- РХИ линии, в окрестности которой нужно установить порог
- находятся распределения значения порогов $\overline{THL_0}$ и $\overline{THL_{15}}$ в пике РХИ при AdjBit=0 и AdjBit=15
- определяется оптимальное значение порога $THL_{opt} = (\overline{THL_0} + \overline{THL_{15}})/2$
- для каждого пикселя AdjBit выбирается таким образом, чтобы значение THL для пикселя было максимально близко к THL_{opt}

Распределение счета после эквализации по шумам и энергетической эквализации

- Засветка характеристическим излучением Е=15.7-17.5 кэВ
- Установленный порог THL=15 кэВ
- Разброс счета (RMS) сократился вдвое по сравнению с шумовой эквализацией

Эффект разделения заряда

- Заряд от одиночного взаимодействия гамма-кванта с сенсором может быть наведен на несколько соседних пикселей
- $\sigma = \sqrt{\frac{2nk_BTld}{eU_{bias}}}$ пространственное увеличение облака носителей заряда за счет диффузии
- В ТОТ режиме этот эффект может быть частично уменьшен путем суммирования сигналов в соседних пикселях (кластере)

- увеличение напряжения смещения выше «рабочих» значений позволило существенно поднять энергетическое разрешение детектора в счетном режиме (до σ = 6-7 % @ 24 кэВ)
- максимально протестированное напряжение смещение для 500 мкм GaAs:Cr детектора -1200 В <=> 24 кB/см

Измерения на синхротроне ВЭПП-3М

- Measurements were done at electron-positron storage rings VEPP-3M and VEPP-4M, serving as sources of synchrotron radiation
- VEPP-3M:
 - Electron beam energy: 2 GeV
 - Beam current up to 100 mA
 - Bunch length: 1 ns
 - Period: 125 ns
 - Flux up to: $6 * 10^{10} \ ph/mm^2/s$
- SR station "X-ray microscopy and microtomography":
 - Energy range of monochromatic radiation: 6 44 keV
 - Monochromated SR beam size: 2 mm x 40 mm
 - \blacktriangleright Collimator down to 10 μm x 10 μm

Измерения на синхротроне ВЭПП-3М

- Несколько пикселей детектора было просканировано с шагом 10 мкм с помощью сколлимированного пучка фотонов 10 х 10 мкм² с энергией 18 кэВ
- Получены зависимость отклика пикселя от положения сколлимированного пучка
- Измерено энергетическое разрешение отдельного пикселя: σ=4.5 % @ 18 кэВ
- Получена оценка увеличения облака носителей заряда за счет диффузии: $\sigma \sim 17$ мкм для GaAs:Cr толщиной 1 мм

Отклик детектора при больших потоках фотонов

Beam size: 2 mm x 8 mm

Summary and conclusions

- Систематически изучены характеристики новых пиксельных детекторов на основе чипа Timepix и сенсоров из GaAs:Cr различной толщины (300, 500, 1000 мкм): энергетическое разрешение, пространственное разрешение, соотношение сигнал-шум, долговременная стабильность, зависимость характеристик детекторов от температуры, эффективность регистрации гамма-квантов
- Определены оптимальные настройки детекторов для различных режимов работы
- Эффект разделения заряда существенно ограничивает применение GaAs:Cr сенсоров с толщиной более 500 мкм и размером пикселя 55 мкм в приложениях, где требуются спектральные измерения в режиме счета фотонов. В случае использования GaAs:Cr сенсора толщиной 500 мкм энергетическое разрешение Тітеріх детектора в режиме счета фотонов может достигнуть значения 2.5 кэВ (FWHM) при 25 кэВ
- Разработан метод и создан комплекс программ для итеративной энергетической калибровки пиксельных детекторов на основе GaAs:Cr и чипа Timepix, работающих в режиме измерения энергии, с использованием линий характеристического рентгеновского излучения. В результате достигнуто энергетическое разрешение 8 % на 57 кэВ для GaAs:Cr-Timepix детекторов с толщиной сенсора 1 мм, что вдвое лучше разрешения, получаемого после обобщенной калибровки
- Полученные результаты дают возможность сделать вывод о том, что свойства пиксельных GaAs:Cr детекторов позволяют использовать их в системах рентгеновской радиографии и томографии наряду с кремниевыми, таким образом расширяя диапазон высокого поглощения гамма-квантов до 60 кэВ. П. Смолянский (НЭОВП ЛЯП) GaAsCrTimepi>

- A. Butler, ..., P.I. Smolyanskiy, et al. Measurement of the Energy Resolution and Calibration of Hybrid Pixel Detectors with GaAs:Cr Sensor and Timepix Readout Chip. Physics of Particles and Nuclei Letters, Vol. 12, No. 1, 2015
- A. Guskov, G. Shelkov, P. Smolyanskiy, A. Zhemchugov. On the possibility to use semiconductive hybrid pixel detectors for study of radiation belt of the Earth, J. Phys.: Conf. Ser. 675 032018, 2016
- S.M. Abu Al Azm, ..., P. Smolyanskiy, et al. Response of Timepix Detector with GaAs:Cr and Si Sensor to Heavy Ions, Physics of Particles and Nuclei Letters, Vol. 13, No. 3, 2016
- P. Smolyanskiy, et al. Characterization of GaAs:Cr-based Timepix detector using synchrotron radiation and charged particles, J. Inst. 11, C12070, 2016
- P. Smolyanskiy, et al. Study of a GaAs:Cr-based Timepix detector using synchrotron facility, J. Inst. 12, P11009, 2017
- P. Smolyanskiy, et al. Properties of GaAs:Cr-based Timepix detectors, submitted to NIMA

Спасибо за внимание!

Backups