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Abstract

Given a linear differential equation with coefficients in Q(x), an important question is
to know whether its full space of solutions consists of algebraic functions, or at least if one
of its specific solutions is algebraic. After presenting motivating examples coming from
various branches of mathematics, we advertise in an elementary way a beautiful local-
global arithmetic approach to these questions, initiated by Grothendieck in the late sixties.
This approach has deep ramifications and leads to the still unsolved Grothendieck-Katz
p-curvature conjecture.
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We consider in this text linear differential equations of order r
ar ()Y (2) + ar_1(2)y" V(@) + - + a1 (2)y () + ao(2)y(z) = 0,
where the a;’s are known rational functions in Q(x) and y(z) is an unknown “function”.

function y € Ql[z]] is differentially finite (in short, D-finite) if it satisfies

a linear differential equation like (1).

A function y € Q[[z]] is called algebraic if it is algebraic over Q(x), that is, if y(z) satisfies
a polynomial equation of the form P(z,y(x)) = 0, for some P € Q[z,y] \ {0}.

Pu(a,y(@)) + 9/ ()P, (2, y(x)) = 0.

any algebraic function is D-finite



Proposition 1.4 (“Eisenstein’s criterion” (1852)). If the function y(x) = >, apx® € Q[x]]
is algebraic, then there exists N € N\ {0} such that y(Nz) — y(0) € Z[[z]]. In particular, only a
finite number of prime numbers can divide the denominators of the coefficients ay.

L = a,(x)0" +ar_1(x)0 "+ +a1(x)0, +ap(xr) € Q(az) <6’w>

Proposition 1.5. The ring Q(z)(0,) is left Euclidean, i.e., for all A, B € Q(x)(9,) with B # 0,
there exist QQ and R in Q(x){0,) such that A = BQ + R and deg R < deg B. Moreover, the pair
(Q, R) is unique with these properties.

ar ()Y (@) + ar—1(2)y "V (@) + -+ a1 (@)Y (2) + ao(z)y(z) =0, (1)

Proposition 1.6 (“Cartier’s lemma”). If all solutions of (1) are algebraic functions, then for all
but a finite number of prime numbers p, the remainder of the left Euclidean division of 9% by &
has all its coefficients divisible by p.



Example 1.7. The generating function of the Catalan numbers, y(z) = Y, ., Cy2", satisfies
the differential equation (422 — )y () + (10x — 2)y/ () + 2y(x) = 0, which is easily deduced,
either from the inhomogeneous differential equation of order 1 in Example 1.1, or directly
from the recurrence (k + 2)Cy1q1 — (4k + 2)C, = 0. The associated differential operator is
& = (42* — z) 02 + (10z — 2) O, + 2, and the remainders of the left Euclidean divisions of &%
by £ for p € {2,3,5} are

2 (5 —1) 2
82 do%:_ aa:_ 9
@ 11O x(4r — 1) x (4r — 1)
6 (2222 — 92 + 1 6(6x — 1
angdg: ( ‘ m2 )aa: (x )27
r? (4x — 1) r? (4x — 1)
120 (386x* — 32523 + 11022 — 172 + 1 120(13023 — 6922 + 142 — 1
5 mod 2 — (386 T 4:1: T )a$+ (130 :13—|—4 T )
xt (4x — 1) xt (4z — 1)

Note that indeed, we have 97 mod . = 0 modulo p, in the three cases.



Conjecture 1.10 (Christol-André conjecture). Assume that y(z) = > ;5o arz” € Q|[z]] is D-
finite, such that:

(1) the sequence (ax)x>o has at most geometric growth;
(2) there exists N € N such that y(Nz) — y(0) € Z[[z]];

(3) in the minimal-order monic linear differential equation satisfied by y(x), the point x = 0
is not a pole of any of the coefficients a;(x).

Then, y(x) is algebraic.

Conjecture 1.11 (Grothendieck’s conjecture, version 1). Let .& € Q(x)(d,) be the differential
operator attached to (1). If for all but a finite number of prime numbers p, the remainder of the
left Euclidean division of 0% by .& has all its coefficients divisible by p, then all solutions of (1)
are algebraic functions.



Gauss hypergeometric function with parameters a, b, c € Q, ¢ ¢ Z<(, defined by

Fi(fa, 8] [ o) = 3 L0k e

|
k>0 (C)kk

In general, y(z) = 2F1([a, ], [c]; x) satisfies the second-order differential equation

z(z — 1y () + ((a + b+ Dz — o)y () + aby(z) = 0

More precisely, let us assume that none of a, b, c — a and ¢ — b is an integer (equivalently,
the operator H(a, b;c) == 2(1 —x2)d? + (¢ — (a+ b+ 1)x)d, — ab is irreducible) and let D be the
common denominator of a, b and ¢. Then, the Landau-Errera criterion says that the following
assertions are equivalent:

1. the hypergeometric function 2 F ([a, b], [c]; z) is algebraic;

2. the operator H(a, b; c) admits only algebraic solutions;

3. for every ¢ < D coprime with D, either {¢a} < {lc} < {¢b} or {¢b} < {lc} < {la}.
(Here {z} denotes the fractional part z — [z] of x.)

The last condition is equivalent to the fact that, for every / < D coprime with D, the two
sets {e2ma e2mi0Y and {e2™c 1} are interlaced on the unit circle. ’



L =0, +alzx) (13) ZLp =0y +a(x)modp (14)

Proposition 3.1. The monic first order differential operator (13) has a nonzero rational (resp.
algebraic) solution if and only if its constant coefficient a(x) has at most a simple pole with
integral (resp. rational) residue at each point of QQ and vanishes at oc.

Proposition 3.3. Consider b(x) € F,(x). The differential equation
y' + b(z)y =0

has a nonzero rational solution if and only if b(z) has at most a simple pole with residue in F,
at each point of IF,, and vanishes at oc.

Theorem 3.5. If (13) has a nongero algebraic solution, then, for almost all primes p, (14) has
a nongero rational solution.

Theorem 3.6 (Honda [43]). The converse of Theorem 3.5 holds true, i.e., if, for almost all
primes p, (14) has a nongero rational solution, then (13) has a nonzgero algebraic solution.



y +b(x)y=0  withb(z) e Fp(z). (18

Consider the F,(«?)-linear map

A:Fp(x) — Fp(z)
f = f+o@f
Definition 3.8. The map
AP Fy(z) — Fp(x)

is called the p-curvature of (18).

Proposition 3.9. The differential equation (18) has a nongero rational solution if and only if
AP = 0.



L =0"+by_1(x)-0" -+ by (x)0p + bp(x) (22)

Let Y’ 4+ B(x)Y = 0 be the differential system associated to (22), where

(0 -1 0 - 0 0 \
o o -1 ... 0 0
= 1 ot e MR ).
O 0 o0 1 (Fp())
0 O o --- 0 —1
Kbo br by -+ bp—2 bn—l/

A:Fp(x)* — Fp(z)”
F +— F'+ B(x)F.
Definition 3.17. The map
AP Fy(z)” — Fpx)”
is called the p-curvature of (22).



Conjecture 3.16 (Grothendieck’s conjecture). For a differential operator £ € Q(z)(0;) as in
Eq. (21), the following properties are equivalent:

(1) £ has a full basis of algebraic solutions;

(2) for almost all primes p, £, has a full basis of rational solutions.

Conjecture 3.21 (Grothendieck’s conjecture in terms of p-curvature). For a differential opera-
tor £ as in Eq. (21), the following properties are equivalent:

(1) £ has a full basis of algebraic solutions;
(2) for almost all primes p, the p-curvature of £, vanishes;

(3) for almost all primes p, %, divides 9% in the ring of differential operators F,(z)(0,).



a1y..-,0p _ — n cnt+1 _ (ntai)(ntaz)...(ntap)
qu< bi,..., b ‘Z) = 2 ", e (nFb)(ntb) (nF )

HC(a,b) = (x0; + by — 1)+ (20 + bs — 120 — x(x0p +a1) -+ (x0 + as11).

Theorem 3.22 (“interlacing criterion”, Beukers-Heckman, [8]). Given two sets of rational

numbers a = {ay,...,as+1and b = {by,...,bs, bs11 = 1}, assumed to be disjoint modulo Z, let
D be the common denominator of their elements. Then, the following assertions are equivalent:

1. the hypergeometric function s11Fs([a1,...,ass1],[b1,-..,bs]; z) is algebraic;

2. the operator ¢ (a,b) admits a full basis of algebraic solutions;

3. forall 1 < ¢ < D with gcd(¢, D) = 1 the sets {e*™*% j < s + 1} and {e*™*% j < 5 + 1}
interlace on the unit circle.



Thank you for your attention!
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