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The coalescence model for composite particle spectra from high energy collisions is formulated in a way which clarifies 
the underlying assumptions and the meaning of the parameters in the model. A density matrix formalism is used to descrNe 
a highly excited part formed by a collision and the coalescence volume is found to be related to the internal wave function 
of the composite particle and the spatial distribution of nucleons in the highly excited part. 

Composite particle spectra from high energy nucleon-nucleus  and nucleus-nucleus  collisions have been sucess- 
fully explained by the coalescence model [ 1 - 3 ] .  The model  assumes that a group of  nucleons whose momenta  lie 
within a momentum sphere of  radius P0 coalesce to produce a composite particle. The probabil i ty for emission of 
a composite particle with Z protons and N neutrons can be expressed by the proton and neutron emission proba- 
bilities as 

P(Z, N; k) = (~ 7rp3) A -  I(Z! N!)  -1 [Pp(k)] Z [Pn(k)]N , (1) 

where k is the momentum per nucleon and A -= Z + N. The probabilities are related to the corresponding Cross 
sections as 

= 3' d3o(Z, N)  3' d3°p P n ( k ) =  7 d3an 
P(Z ,N;k )  aO d3k , P p ( k ) = o 0  d3 k , °0 d3 k , 

(2) 

where 7 -= (1 + k2/m2) 1/2 is the Lorentz factor with m denoting the nucleon mass. a 0 is usually taken to be the 
reaction cross section but  this choice is not always justified as will be discussed later. The coalescence radius P0 is 
a parameter o f  the model  to be determined through the analyses of  data for each composite particle. Although the 
model is intuitively understandable,  its theoretical foundation has not  yet  been well established. 

In this note,  we use a density matrix formalism [4] to describe the model  and try to clarify the underlying as- 
sumptions and the meaning of  the parameters. We assume that,  after a fast process in a collision, a highly excited 
part (HX) is formed temporari ly and decays by emitt ing various particles. The HX may be a fireball or a hot spot, 
but  we need not  specify it further. It is conveniently described by a density matrix [5] and we assume that the 
momentum distributions of  emit ted particles are approximately given by the density matrix at this stage. This as- 
sumption seems justified only for relatively fast particles for which various final state interactions after this stage 
can be neglected. The picture of  the reaction process presented here looks similar to the one proposed by Mekjian 
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[6] in the framework of  a thermal model but neither thermal nor chemical equilibrium needs to be assumed in 
our picture ,1 

The probability for proton emission at momentum k in the c.m. system of the HX is then given by 

1 fdr  dr' e-ikrpp(r, r')e ikr' ep(k) = ~ , (3) 

where pp(r, r ' )  is the proton density matrix in the HX. We will, for the moment, restrict ourselves to non-relativis- 
tic particles and therefore the Lorentz factor, 7, will be omitted everywhere. The relativistic case will be briefly 
discussed later. % ,  which relates the probability to the cross section as in eq. (2), is the formation cross section of  
the HX in this picture and is in general a fraction of  the total reaction cross section. The neutron emission proba- 
bility, Pn(k), is similarly given by the neutron density matrix On(r, r'). The expression (3) can be generalized to 
the case of  a composite particle and, for example, the probability for deuteron emission at momentum per nucleon 
k is given by 

_ _  . _ _ f  t t t , t t t • ~ t p(1,1;k) = 2 3 3 dr1 dr2 dr1 dr2 e-ik(rl+r2)~l(rl --rz)Opn(rl,r2;rl r2 )¢d( r l  --r2)elk(rx+r2) (4) 
(27r)3 4 ' ' 

where P-n is the pro ton-neut ron  two-particle density matrix and ~d is the deuteron internal wave function. The 
factor 2 ~ is due to the fact that we are considering the momentum per nucleon and 3/4 is due to the spins. We then 
assume that Ppn is approximately given by the product of  pp and Pn, i.e. 

r r ! 

Ppn(rl, r2; r l ,  r2) ~ pp(rl ,  r l )  On(r2, r~) ,  (5) 

which is equivalent to neglecting the p - n  correlation in the HX ,2. This seems justified for a randomized system in which 
specific correlations between nucleons are expected to be smeared out. We further assume that the one-particle 
density matrix, pp for instance, can be written as 

pp(r, r ' )  = Dp((r + r ' ) /2)  f d k  eik(r-r')Pp(k), (6) 

where Dp describes the spatial distribution of  protons in the HX and is normalized as 

f dr Op(r) : 1. (7) 

The factorized form (6) implies that the spatial and momentum distributions are not correlated with each other. 
With the assumptions (5) and (6), the expression (4) becomes 

P(1, 1;k) : fdp Fd (p)ep(k +p)Pn(k - p ) ,  (8) 

where F d is defined by 

Fd(P ) _ 2 3  43/" dq • a ~  ~ ~ (P + ~ q)t~d(P -- ½ q)Dp(q)Dn(-q), (9) 

with t~ d , / )p  and/)n  denoting the Fourier transforms of  ~d, Dp and D n, respectively. Expression (8) indicates that 
a proton and a neutron whose momenta are k + p and k - p ,  respectively, coalesce to produce a deuteron with a 

,1 A clear picture of a fireball explosion was given in ref. [5 ]. The present approach assumes that the transition from compressed 
hot matter to a dilute system of non-interacting particles is so fast that a sudden approximation can be used to calcl e the 
emission probabilities of the particles. 

,2 It should be noted that, in the present scheme, a deuteron is not produced by a dynamical p n correlation but by a localiza- 
tion of nucleons in phase space as described by the density matrices. 
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probability Fd(P ), which is determined by the deuteron internal wave function ffd and the spatial distribution 
functions Dp and D n through eq. (9). If the k-dependences of Pp(k) and Pn(k) are weak compared with the p-de- 
pendence of Fd(P), eq. (8) becomes equivalent to eq. (1) for Z = N = 1 with 

4 n.p3 = f dp Fd(P ) . (10) 

Using eq. (9), one can express the coalescence volume in terms of ~d, Dp and D n as 

4rrP03 = 2 3 - ~ .  (270 3 far Iq;d(r)12D2(r), D 2 ( r ) = f d r ' D p ( r - r ' ) D n ( r ' ) .  (11,12) 

D2(r ) gives the distribution of the p - n  relative coordinate in the HX and is closely related to the interaction vol- 
ume introduced by Mekjian [6]. In fact, if the spatial size of the internal wave function ffd is much smaller than 
that of the HX, then eq. (11) gives 

4rcPO 3 ~ 2 3  3 (13) • ~ • (2rr)3D2(0). 

D2(0 ) thus corresponds to the inverse of the interaction volume. In the actual situation, however, the size of the 
deuteron is comparable to that of the HX and therefore one has to use eq. (11) to relate the coalescence volume 
with the spatial size of the HX. 

Expressions analogous to eqs. (8-10)  can be obtained for the other composite particles such as 3H, 3He and 
4He. In the case of triton (3H) one gets 

P(1, 2 ; k ) = f  dPl dP2 Ft(Pl,P2)Pp(k + pl)Pn(k - 1 1 Pl + P2)Pn (k - 5Pl -P2 ) ,  (14) 

1 f d q l d q 2  - ,  1 1 1 1 
• - i q 2 )  Ft(Pl,P2) =33 4 j  ~ ~t (Pl  +Sql ,P2  + i q 2 ) ~ t ( P l  -Sql,P2 

- 1 - 1 ( 1 5 )  × Op(ql)Dn@-~ ql + q2)Dn(-~ ql - q2) ,  

where ~t is the Fourier transform of the triton internal wave function fit" The coalescence volume is related to 
F t as 

x (-~ 7rp3)2 = fdPl dP2 Ft(Pl,P2) (16) 

Trivial modifications give the expression for 3He. For alpha particles (4He), one gets 

e(2, 2;k)  = f dp I dP2 dP3 Fa(pl,p 2, p3)Pp(k +pl)Pp(k - 5Pl +P2) 

(17) 
XPn(k 1 1 - 2 2 - P 3 ) ,  -3Pl -2P2 +P3)Pn( k ½Pl _ lp  

~6(dqxdq2dq3 t ~ ( p l  1 1 1 1 1 
• +~ql ,P2  +~q2,P3 + l#3 )~c~(P l - -~q l ,P2  -~q2,p3-~q3) Fc~(Pl, P2, P3) = 43 a (270 9 

I . 1 (18) X/)p(q 1)/)p(-½ ql + q2)Dn(-g ql - ½ q2 + q3)/)n( -1  ql - ~ q2 - q3) ,  

¼~/rp3) 3 :  f d P  1 dP2 dP3 Fa(Pl,P2,P3), (19) 
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where ~a is the Fourier transform of the internal wave function for 4He. 
Since the functions F defined by eqs. (9), (15) and (18) are the crucial quantities in the present description, it 

is instructive to have their explicit forms for some simplified choice of  the wave functions ff and the function 
D. Assuming gaussian forms, i.e. 

~d(r) = (Vd/27r)3/4 exp(--¼ vdr2), ~t(rl ,  r2) = (v2t/37r2)3/4 exp(--~ vt r2 -- ¼ vtr2),  

~a(r 1' r2,r3)  = (v3/47r3)3/4 exp(__~ par 2 -Sva l  r 22 - l v a 4 ) ,  Dp(r)=Dn(r)=(v/Tr)3/2 exp( -vr2)  ' 

one obtains 

Fd(P ) = 23 3 1 • ~ [4v/(v d + v)] 3/2 exp(_2p2/vd) ,  F t ( P l ,  P2) = 33 " ~ [4v/(ut + v)] 3 exp(_3p2 /2v t  _ 2p2/u t ) ,  

F a ( P l , P 2 , P 3 )  = 43"  ~6 [4v/(vc~ + v)l 9/2 exp(-ep2/3vc~ - 3p2 /2vc~ - 2p2 /ua) • 

Eqs. (10), (16) and (19) then relate the coalescence radii P0 to the size parameter v of  the HX as 

4 3 3 3/2 + V)] 3/2 for the deuteron gTrp = ~ • 23/2(4rr) [VdV/(V d , 

1 0 3 = 1  (-~ 7rp )2 ~ • 33/2(4rr) 3 [vtv/(v t + v)] 3 for the t r i ton,  

1 4 7rP03)3 = 1 . 43/2(4zr)9/2 [vav/(va + v)] 9/2 (~ , for the alpha particle. 

While the k-dependence of  Pp(k) and Pn(k) has been neglected in the above relations, its effect can be taken into 
account in the case of  gaussian Pn and Pn, i.e. 

Pp(k) cc Pn(k ) cc exp(_/3k2). 

The modified relations result in multiplyingp0 in the above by the factor (1 + ~Vc) 1/2 (Pc = Vd, vt or Vc~ ). 
We take, as an example, the case of a Ne + U collision at the incident energy of  400 MeV/nucleon and use the 

coalescence radii obtained through the analyses of  the data [1] to deduce the values of  the parameter v. The wave 
function parameters are [7] 

Pd = 0.20 fm - 2  , Pt = V3He = 0.36 fm -2  , u s = 0.58 fm -2  . 

/3 is taken to be either zero (weak k-dependence o f P  n and Pn) or 0.52 fm 2 corresponding to the temperature of  
40 MeV. The results are shown in table 1. The size parameter Rth of  the interaction volume in Mekjian's thermal 
model [6] is also given and ~ R t h  is compared with the rms radius Rrm s - ~  of  the HX in the present 
model. Due to the finite size effect of  the composite particles, Rrm s is always smaller than x , / ~ R t h  and also its 
dependence on the composite particles is different from that of  Rth. The k-dependence of  Pp and Pn further re- 
duces the values o fRrm s. Although the table is useful in studying the relations between the models in a semi- 
quantitative way, the values o fRrm s should not be taken too seriously, since the coalescence radius P0' contains 
an ambiguity due to our lack of  knowledge on the formation cross section o 0 of  the HX. 

A fully relativistic extension of  the present description is not trivial and requires a relativistic theory of  corn- 

Table 1 
The size parameter of the highly excited part (HX) for a Ne + U collision at 400 MeV/nucleon. 

Composite Po a) x / ~ -  Rt h b) Rrms (/3 = 0) Rrms (# = 0.52 fm 2) 
particles (MeV/c) (fro) (fm) (fm) 

d 129 5.30 4.53 4.23 
t, 3He 129 4.54 4.38 3.94 
'*He 142 3.81 3.71 3.16 

a) Ref. [1]. b) Ref. [61. 
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posite particles. However, minimal kinematical modifications can be included so long as the internal motion of  
the composite particles is non-relativistic. These are the Lorentz factor 7 in the expression of  the emission proba- 
bil i ty in terms of  the density matrix which gives the same factor in eq. (2) and a slight modification of  the mo- 
mentum variables in the definition of  the function F. 

The density matrix formalism seems appropriate for the quantal description of the coalescence model  and 
clarifies the roles of  various factors characterizing the composite particles and the particle emission source (HX). 
The thermal model proposed by Mekjian seems to correspond to a limiting case where the sizes of  the compo- 
site particles are much smaller than that of  the HX. It should be noted here that the density matrix formalism also 
seems appropriate for the description of  the two-particle correlation which has been discussed in connection with 
the H a n b u r y - B r o w n - T w i s s  effect, and leads to an expression very similar to that obtained by Koonin in the wave 
packet formalism [8]. Such an application will be discussed in a separate paper. 

Finally, we note that the present approach is applicable to the analyses of  hadron spectra from high energy col- 
lisions where the highly excited part is now described by a density matrix for quarks [9]. 

We should like to thank Prof. K. Nakai for fruitful discussions. One of  the authors (H.S.) thanks Profl T. 
Marumori for the hospital i ty at INS. 
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