
Dear Mikhail and Vadim, 

 

Sorry for a delay with my comments on the pdt paper from June 27 - I spent a time with 

inspecting literature on the coalescence problem and making some calculations.  

 

The resulting text appears quite long and perhaps difficult to read, so please start with 

Comments, questions and suggestions at the end and inspect the rest for details. 

 

I would say that the main step in the coalescence problem was done in paper [sat81], where 

the expressions for A-nucleon cluster (d, t and 𝛼) formation rate 𝒜A multiplied by A
3 

(due to 

the momentum per nucleon used instead of the A-cluster momentum) are given on page 156;  

note the relation between formation rate 𝒜A and the coalescence parameter BA [mro20]:  

                                                     BA= (A m/m
A
)𝒜A,  

where m is the nucleon mass.  

 

These expressions were obtained with the help of Jacobi variables, assuming  

(some more details and further development can be found, e.g., in [bel18, blu19, baz20, 

bel21]):   

 

- independent nucleon emission, i.e., approximating the A-nucleon emission function 

DA by a product of the single-nucleon ones: DA(r1,p1;..; rA,pA) = D(r1,p1) .. D(rA,pA); 

note that DA is closely related with the Wigner phase space density used in [21], the 

latter collecting all the DA contributions up to a given time [akk02]; 

- no position-momentum (x-p) correlation in the A-cluster rest frame: D(r,p) = 

Dr(r)Dp(p),  = 1,..,A; the x-p correlation can however enter in Dr(r) through its 

dependence on the nucleon momentum (y, pt, ) in a global (laboratory or nucleon-

nucleon c.m.s.) frame;  

- a spherically symmetrical Gaussian nucleon r-distribution around the source center 

in the A-cluster rest frame, x
*
 = r

*
 -  r*

,  

                                        exp[- x
*2]  exp[-i x

*
i
2], 

characterized by a universal Gaussian x
*2

 slope  = 1/(2Rii
*
), same in all the three 

spatial directions i, corresponding to a universal squared source radius R
*2 

= 1/(2)  

R
*
ii in the  assumed case of vanishing cross terms: R

*
ij = 0 at i  j; 

- a Gaussian parametrization of the A-cluster wave function squared, |A(r1
*
,..,rA

*
)|

2
, 

characterized by a universal r
*
’

2
 slope A/2 (r

*
’

 
= r

*
 - r’

* 
is the spatial separation 

of the nucleons  and ’ in the A-cluster rest frame), related to the cluster r.m.s. 

radius RA (also, see Eq. (3) in [bel18] and note that the quantities A and rA, entering 

in this equation, coincide with RA and (2/A)
1/2

, respectively):  

                                         1/A= 2nARA
2
, nA = A/[(3(A-1)]; 

- a weak momentum dependence of the single-nucleon spectra; for a Gaussian 

momentum spectrum  exp(-p
2
), with the slope   1/(2mT0) inversely related to the 

effective temperature T0, the correction factor to the calculated formation rate 

composes (1+A)
-(A-1)/2

 and is usually close to unity (also, see Eq. (3.21) in [21]); 

this, so called Kopylov-Podgoretsky “smoothness assumption”, is widely used in 

momentum correlation femtoscopy, see, e.g., [pod89]; in the context of a close 

connection between correlation and coalescence femtoscopy, it was used also in 

[lyu88, 20, led09]; 



- equal emission times in the A-cluster rest frame (allowing one to substitute the time-

dependent Bethe-Salpeter amplitudes by the usual wave functions), justified on the 

condition of a small time-separation t’
 
between nucleons  and ’:  

                                       | t’
 *

|  m r’
 *2

  

and usually leading to a percent correction only (due to a small inverse nucleon mass 

as compared with a typical space-time separation of the emission points) [lyu88, 

led09, kac23]. 

      

The results of [sat81] have been generalized (see, e.g., [21], [bel18], [blu19], [bel21]), 

introducing different Gaussian slopes i = 1/(2R
*
ii) in the directions i = o (out), s (side), l 

(longitudinal), where out-direction is chosen along the transverse cluster velocity.  

 

Generally, to take into account also the cross terms, one should substitute i xi
*2

 by the 

quadratic form ij {R
*-1

}ij
 
x

*
ix

*
j/2, so that the x

*
i - distribution becomes                                      

                                              exp[-ij {R
*-1

}ij
 
x

*
i x

*
j/2], 

where {R
*-1

}ij are the elements of the inverse squared radii matrix and 

                                               R
*
ij

 
=  x

*
i
 
x

*
j; 

obviously, the diagonal quadratic radii R
*
ii

 
= R

*
i
2 

are positive definite, while the non-diagonal 

ones R
*
ij at i  j can be negative.   

 

In principle, the quadratic radii matrices can be measured with the help of two-particle 

momentum correlation femtoscopy based on the two-particle final state interaction (FSI) and 

quantum statistics (QS):  

the two-particle correlation function at the relative momentum q
*
= p1

*
- p2

* 
in the pair rest 

frame (PRF) is given, in the equal-time approximation, by a sum of the scattering wave 

functions squared, averaged over spatial separations r
*
 = r1

*
- r2

*
  x1

*
- x2

*
and spin 

projections of the detected particles; the sum is done over the contributing intermediate 

channels and corresponding spin projections (the opposite sign of the vector q
* 
in the 

scattering wave functions appears since the scattering due to FSI is viewed in the opposite 

time direction; also, the detected channel should be considered as the entrance one; see 

[led82, led98, led09] and references therein): 

                                             (q
*
) =  |-q*(r

*
)|

2
; 

the spin projection and channel indices, affecting the summation and averaging, are omitted 

for simplicity. For identical particles, in accordance with the Bose-Einstein or Fermi-Dirac 

QS, the non-symmetrized wave function should be substituted by the symmetrized one: 

                                  
S

-q*(r
*
)  [

S
-q*(r

*
) + (-1)

S 


S
q*(r

*
)]/2, 

where S is the total pair spin.  

 

In the considered case of independent particle emission and Gaussian distributions of x1
*
 and 

x2
*
, the r

*
 – distribution is also Gaussian: 

                                        exp[-ij {R
(12)*-1

}ij
 
r
*
i r

*
j/2], 

where 

                                     R
(12)*

ij
 
=  r

*
i
 
r
*
j = R

(1)*
ij

 
+ R

(2)*
ij. 

 

Thus, studying correlations of various particle species, one can extract the quadratic 

femtoscopic radii matrices for separate species, including nucleons. Doing this, one should 

take into account that non-Gaussian tails of the emission functions (e.g., due to particles from 

long-lived emitters) and possible admixtures of misidentified particles lead to the correlation 



suppression factor   12 , where 1 and 2 are the fractions of correlated particles [led79, 

akk02, led09]. As a result: 

                                      (q
*
) = (1-) +   |-q*(r

*
)|

2
. 

 

However, the multidimensional correlation analysis requires very large statistics and up to 

now, it has been practically realized for identical charged pions only. In this case, after a 

correction for the Coulomb FSI [sin98], the correlation function is dominated by the effect of 

QS, reflected in the symmetrization of the plane waves describing “non-interacting” pions: 

                               -q*(r
*
) = [exp(-i q

*
r

*
/2) + exp(i q

*
r

*
/2)]/2. 

Taking into account the suppression factor , the corresponding two-pion correlation 

function                      

                                (q
*
) = 1+ cos(q

*
r

*
) = 1+ exp[-ij R

*
ij

 
q

*
i q

*
j],  

where  

                                            R
*
ij = ½  r

*
i
 
r
*
j =  x

*
i
 
x

*
j  

are the elements of the matrix of the femtoscopic pion squared radii in PRF. 

 

In fact, the 3-vector scalar product in the plane wave in PRF can be written in any frame as a 

4-vector scalar product: - (q
*
r

*
) = (q x) = q0 t – q

 
r, where t = t1 -t2, r = r1- r2 and q0 = E1 - 

E2 is the difference of particle energies (note that q
*
0 = 0 for equal-mass particles). 

 

Taking into account vanishing of the scalar product of the 4-vectors q = {q0, q} and P = p1+p2 

for equal-mass particles: Pq  P0q0 - Pq = m1
2
 - m2

2
 = 0 and noting that  = P/P0 is the pair 3-

velocity, one can rewrite the 4-vector scalar product (q x) as  

                                           (q x) = - i qi (ri -i t). 

 

As a result, the correlation function of two non-interacting identical pions can be written in 

any frame as [pod83, cha95]: 

                          (q) = 1+ cos(q r) = 1+ exp[-ij Rij
 
qi qj], 

where  

                        Rij = ½  (ri -i t) (rj -j t) =  [xi -i (t-t)] [rj -j (t-t)] . 

 

Note that the out-longitudinal cross term is the only one possible in case of azimuthally 

symmetric analysis [pod83, cha95]; the other two, out-side and side-long, terms are possible 

in the analysis with respect to the reaction plane.  

 

In longitudinally comoving system (LCMS), the pair moves in the out-direction and the time 

dependence affects this direction only. Also, the Lorentz boost from LCMS to PRF acts along 

the out-direction only (t = mt/m, t = pt/mt): 

                                  x
*
o = t [xo - t

 
(t-t)], x

*
s
 
= xs, x

*
l
 
= xl, 

enhancing the effective space-time separation [xo - t
 
(t-t)] by the transverse Lorentz factor 

t. E.g., the PRF radius in the out-direction (see also footnote 5 in [sin98]): 

                                  R
*
o = t Ro. 

 

Sometimes, the opposite relation between PRF and LCMS out-separation is mistakenly 

derived due to the incorrect and unnecessary assumption of equal nucleon emission times in 

PRF, see, e.g., Eqs. (26-27) in [zha22]; in [21], the same assumption led to the incorrect 

statement on page 12: “Deuterons with non-zero transverse velocity see the fireball Lorentz-

contracted in their direction of motion; this decreases the corresponding length of 

homogeneity and thus Cd”.  



 

Similarly, the Lorentz boost from laboratory system to the LCMS enhances the longitudinal 

LCMS radius Rl by the longitudinal Lorentz factor l = cosh(y): Rl = lR
lab

l, leading to a bell-

shape y -dependence of the laboratory longitudinal radius in case of a constant Rl in LCMS 

[mak88]: R
lab

l = Rl/cosh(y). 

 

In the presence of the out-longitudinal cross term (a non-zero out-longitudinal squared radius 

Rol), the Gaussian approximations of the emission function and the A-cluster wave function 

squared allow one to express the coalescence parameter BA for the A-cluster of spin-S in a 

simple analytical form: 

 

  BA= gS A
 
[(2)

3
/m)]

A-1
 d

3
r1 .. d

3
rA DA(r1,p1;..;rA,pA)|A(r1,..,rA)|

2 

 

      = gS A A
 
[(2)

3
/m)]

A-1
 d

3
r1 .. d

3
rA 𝐷̃A(r1,p1;..;rA,pA)|A(r1,..,rA)|

2 

 

      = gS A A
-1/2

{(2)
3/2

/[m([(R
*
oo

 
+ nARA

2
)(R

*
ll

 
+ nARA

2
) - R

*
ol

2
]   

                                                                             (R
*
ss

 
+ nARA

2
))

1/2
]}

A-1 

 

       gS A A
-1/2

{(2)
3/2

/[m([(R
*
o
2 

+ dA
2
)(R

*
l
2 

+ dA
2
) - R

*
ol

2
]   

                                                                          (R
*
s
2
+ dA

2
))

1/2
]}

A-1
,           (1)    

    

where gS = (2S+1)/2
A
 is the spin factor in case of unpolarized nucleons and 𝐷̃A is the A-

nucleon emission function, describing nucleons from short-lived emitters (characterized by 

finite PRF radii) and thus contributing to the production of the A-cluster. The corresponding 

fraction of such A nucleons is the A-cluster suppression parameter A  N
A
, similar to the 

two-particle correlation suppression parameter   12 (except for the admixture of 

misidentified particles, usually corrected for in the production cross sections); the fraction N 

of correlated nucleons is less than unity due to non-Gaussian tails of the nucleon emission 

functions, e.g., due to nucleons from hyperon decays [led79, bel21].  

 

In the last row, we have introduced a modified A-cluster radius squared dA
2 

with the absorbed 

factor nA = A/[(3(A-1): 

 

                                                           dA
2
 = nARA

2
 . 

 

One finds [ang13]: 

                             deuteron   triton     
3
He      

4
He       

6
Li       

9
Be 

            RA , fm        2.13       1.76      1.97      1.68      2.59     2.52 

             dA , fm        1.74       1.24      1.39      1.12      1.64     1.54    

 

Neglecting the out-longitudinal squared radius R
*
ol, Eq. (1) at R

*
oo

 
= R

*
ss coincides with Eq. 

(31) in [blu19] (if correcting Eq. (B3) for a missed factor 1/2) and, for A = 2 and 3, - with 

respective Eqs. (49) and (50) in [bel21], which take into account also different out- and side- 

radii. 

 

Introducing the homogeneity volumes V
*
hom = R

*
oR

*
sR

*
l in PRF and Vhom = RoRsRl in LCMS 

(defined as products of the Gaussian PRF and LCMS femtoscopic radii in the out-, side- and 

longitudinal- directions) and taking into account that R
*
o = t Ro, R

*
s = Rs, R

*
l = Rl and 

                                              mV
*
hom = mtVhom ,  



one may express BA through the homogeneity volumes as: 

                                        

      BA = gS A A
-1/2

{[[1+ (dA/R
*
o)

2
] [1+ (dA/R

*
l)

2
]- (R

*
ol/(R

*
oR

*
l))

2
]  

                                  [1+ (dA/R
*
s)

2
]}

-(A-1)/2  
[(2)

3/2
/(mV

*
hom)]

(A-1)
  

 

             gS A A
-1/2

{[[1+ (dA/(tRo))
2
] [1+ (dA/Rl)

2
]- (Rol/(RoRl))

2
]  

                                  [1+ (dA/Rs)
2
]}

-(A-1)/2  
[(2)

3/2
/(mtVhom)]

(A-1) 
.              (1’)

 

 

The obvious generalization of the Eq. (1’) to azimuthally () dependent analysis with non-

zero mixed squared radii Ros and Rsl is achieved by the substitution 

 

  [1+ (dA/Rs)
2
]  {[1+ (dA/(tRo))

2
] [1+ (dA/Rs)

2
]- (Ros/(RoRs))

2
}  

                                       {[1+ (dA/Rl)
2
] [1+ (dA/Rs)

2
]- (Rsl/(RsRl))

2
]} / 

                                   {[1+ (dA/(tRo))
2
] [1+ (dA/Rs)

2
] [1+ (dA/Rl)

2
]}.         (1’’) 

 

The above equations for the coalescence parameter do not rely on a concrete production 

model. They allow one to calculate BA(y,mt) or BA(y,mt,) provided that the femtoscopic 

quadratic radii Rij(y,mt) or Rij(y,mt,) are known (e.g., from pp femtoscopy) and compare BA 

with the data. The eventual discrepancy may be related with the assumptions of: 

- Gaussian approximations of both, the wave function squared and the emission 

function; 

the former assumption leads to a decrease of deuteron coalescence parameter (this 

decrease composes ~ 4% at Ro = Rs = 5.1 fm and Rl = 3.2 fm [21] and ~ 30% at Ro = Rs = 
Rl = 2 fm (see Fig. 1 in [bel21]);  

as for the latter assumption, in the expanding fireball model with a linear transverse 

flow rapidity profile [21], it leads to a weak power-like  mt
b (b ≲ 0.5) increase of BA;  

this increase may become nearly exponential in mt, when substituting the Gaussian 
transverse density profile by a box-like one (see Fig. 2 in [21]);  
an additional BA increase with mt can be introduced by the increasing suppression 

parameter A [blu19]; 
- independent nucleon emission; 

this assumption can be checked as a flat behavior of the A-nucleon correlation 

function outside the region of small relative nucleon momenta, which is free of the 

effects of nucleon final state interaction (FSI) and quantum statistics (QS); such a 

correlation plateau is usually observed in heavy ion collisions (see, e.g., [zbr11]).  

 

The coalescence parameter BA in Eq. (1) can be rewritten in a form similar to Eq. (6.2) of 

[21]: 

 

                              BA = gS A A
-1/2

 CA [(2)
3/2

/(mtVhom)]
A-1

,                                 (2) 

 

where CA is the so-called quantum correction factor: 

 

  CA = A
3/2

 [(2)
3/2

V
*
hom]

A-1
 d

3
r1 .. d

3
rA 𝐷̃A(r1,p1;..;rA,pA)|A(r1,..,rA)|

2 

 

       = {[[1+ (dA/R
*
o)

2
] [1+ (dA/R

*
s)

2
]- (R

*
ol/(R

*
oR

*
l))

2
] [1+ (dA/R

*
l)

2
]}

-(A-1)/2 

 

       = {[[1+ (dA/(tRo))
2
] [1+ (dA/Rs)

2
]- (Rol/(RoRl))

2
] [1+ (dA/Rl)

2
]}

-(A-1)/2 
;          (3) 

 



CA = 1 for a production of A-cluster, which can be considered “point-like” as compared with 

the PRF-size of the nucleon source (dA ≪ R
*
i).  

 

In case of azimuthally dependent analysis, the substitution (1’’) should be done in Eq. (3). 

 

Note that Eq. (2) was obtained in [21] within the hydrodynamic motivated parametrization of 

the expanding locally equilibrated fireball, characterized by a local temperature T at the 

freeze-out longitudinal proper time  = (t
2
-z

2
)
1/2

 with a Gaussian distribution of a width   

around a mean evolution time 0, a Gaussian width  of the transverse radius  = (x
2
+y

2
)
1/2

 

distribution and a Gaussian width  of the longitudinal space-time rapidity  = arctanh(z/t) 

distribution of the expanding matter, assuming so called Bjorken scaling of the longitudinal 

flow with the matter longitudinal rapidity: l =  and power-law transverse flow profile with 

the matter transverse rapidity: t = f (/)
n
, usually chosen linear: n = 1. The transverse 

characteristics are assumed to be decoupled from the longitudinal ones, i.e., independent of  

and ; also, see [ame06, ame08] for more details, including consideration of Hubble like flow 

and azimuthally dependent non-central collisions.  

 

Within this model, one may generalize the approximate expressions (2.17) in [21] for the 

LCMS femtoscopic radii at n = 1, transverse velocity t
  
 0 and rapidity y  0 in the 

fireball rest frame (usually coinciding with the nucleon-nucleon c.m.s.), to moderate t
 
and y 

as: 

 

  Ro
2

 = Rs
2

 + (t )
2
[1 + 

2
/(

2
mt/T+1) + y

2
/(

2
mt/T+1)

2
], 

 

  Rs
2

 = 
2
/(f

2
mt/T+1), 

 

  Rl
2

 = 0
2
{

2
/(

2
mt/T+1) + y

2
[(/0)/(

2
mt/T+1)]

2
}, 

 

  Rol = yt{
2
[2(

2
mt/T+1) + 

2 
+ y

2
/(

2
mt/T+1)]/2 + 0

2


2
}  

                                                                                      (
2
mt/T+1)

2 
;      (4) 

 

to simplify the notation, we put here 0
2
 = 

2
 = 

2 
+ 

2
, which leads to 0 slightly (~1%) 

higher than 0
 
=  used in Eq. (2.11) of [21]. Eqs. (4) indicate the so called mt scaling of the 

side and longitudinal LCMS femtoscopic radii and a decrease of the measured radii with 

increasing mt, roughly as mt
- 

with  ≲ 0.5, in agreement with experimental observations. 

 

Note that the momentum (pt, y)-dependence of the femtoscopic radii in the considered model 

is generated by the x-p correlation due to the transverse and longitudinal fireball expansion. It 

leads to a suppression of the radii with increasing transverse momentum and a strong 

decrease of the longitudinal radius with the rapidity |y| in the fireball rest frame. The latter 

decrease is compensated in the LCMS by the longitudinal Lorentz factor cosh(y), while a 

decrease of the LCMS out radius with pt is overcompensated in the pair rest frame by the 

transverse Lorentz factor t, leading to Ro
* 
increasing with pt. 

 

In [21], the rapidity dependence of the out and longitudinal radii, as well as the second term 

in the expression for out radius, were omitted due to assumed small |y| and t. As a result, t 

 1, Ro
2

  Rs
2
, Rol

2
  0, and the deuteron coalescence parameter B2 obtained within this 

model (see Eq. (4.12) and (6.3) in [21]) coincides, at A = 1, with the general one in Eqs. (1) 

or (2), (3’). 



 

Note that the predicted linear rapidity rise and sign change at y = 0 of the mixed out-

longitudinal squared radius Rol and parabolic in y rise of out squared radius Roo has been 

recently confirmed by the pion LCMS radii measured by STAR in Au+Au collisions at 3 

GeV c.m.s. nucleon-nucleon energy [kra23].  

 

The side radius appears to be rapidity independent (as expected in the case of decoupled 

transverse and longitudinal matter characteristics) in non-central collisions, while at 0-10% 

and 10-30% centralities a parabolic decrease with rapidity y is observed, thus indicating a 

decrease of the Gaussian transverse radius  with the increasing longitudinal space-time 

rapidity || in the collisions at moderate energies.  

 

Contrary to the parabolic rapidity increase of the longitudinal squared radius Rll in Eq. (4), 

the measured y-dependence of the Rll indicates a more complicated behavior (pointing to 

slight enhancements at edge and middle rapidities), thus again indicating a violation of the 

decoupling of the transverse and longitudinal matter characteristics at moderate energies. 

 

As for the size of Rol, it appears to be less than a quoter of the squared diagonal radii Rii at 

midrapidities |y| < 0.5 and pt = 0.15-0.6 GeV/c (t > 0.73). Using the above limit, the account 

of (Rol/(RoRl))
2
 in Eq. (1’) would lead to an increase of BA for deuterons (tritons) less than 3% 

(6%). In fact, due to much smaller |y|t for nucleons, this increase will be substantially 

smaller. Therefore, at small nucleon momenta in fireball rest frame, one can safely neglect 

(Rol/(RoRl))
2
 in Eq. (1’) or (3) and rewrite the quantum correction factor CA in Eq. (3) as: 

 

          CA  {[1+ (dA/(tRo))
2
] [1+ (dA/Rs)

2
] [1+ (dA/Rl)

2
]}

-(A-1)/2
.            (3’) 

 

To account for a more realistic transverse density profile as compared with the Gaussian one, 

Eq. (3’) can be amended by an exponential factor exp[b A (mt -m)], multiplying CA in Eq. 

(3’): 

 

     CA  exp[b A (mt -m)]{[1+ (dA/(tRo))
2
] [1+ (dA/Rs)

2
] [1+ (dA/Rl)

2
]}

-(A-1)/2
,    (3’’) 

 

as suggested in Eq. (6.4) of [21] with b = (1/Tp - 1/TA) for a box-like transverse density 

profile (leading to different proton and A-cluster mt-slopes 1/Tp and 1/TA). This intuitive 

factor retains Eq. (3’) at small pt and hopefully extends its validity to higher transverse 

momenta.  

  

Using the mt-scaling of the side and longitudinal LCMS radii, one may rescale the measured 

pion radii at 0-10% centrality and mt  0.4 GeV/c
2
 (Rs  5 fm, Rl  4 fm) to mt  1 GeV/c

2
 

(using the same parameters as in [21], except for  and 0 , decreased to  = 5.9 fm, 0 = 

7.7 fm/c in order to describe the measured pion radii) and roughly estimate nucleon LCMS 

radii Ro  Rs  4.2 fm, Rl  2.7 fm in central Au+Au collisions at sNN = 3 GeV, 0-10% 

centrality and mt  1 GeV/c
2
. Taking dd = 1.74 fm (dt = 1.24 fm), one then gets from Eq. (3’) 

the corresponding deuteron (triton) coalescence parameter CA = 0.72 (0.70). 

 

As for the considered expanding fireball model, using parameters adjusted to higher (SPS) 

energies:  = 1.3, f = 0.35,  = 7 fm, 0 = 9 fm/c,  = 1.5 fm/c, i.e., Ro = Rs = 5.1 fm, Rl 

= 3.2 fm at t = y = 0 [21], one finds somewhat higher deuteron (triton) coalescence 

parameter CA = 0.79 (0.77), close to the result of [21]: 0.81+0.03-0.05 (0.78+0.05-0.06).  



 

The measurement of the out, side and longitudinal nucleon radii from two-nucleon 

momentum correlations is not an easy task. Up to now, only one-dimensional analysis of two-

nucleon correlation functions has been done, assuming spherically symmetric nucleon 

emission functions in PRF: Ro
* 
= Rs = Rl

 
= Rinv.  

 

The so-called invariant radii Rinv, extracted by STAR collaboration from two-proton 

momentum correlations in the beam energy scan of Au+Au collisions at proton pt = 0.4-0.8 

GeV/c and |y| < 0.5 are about 2.5 fm, 3.5 fm and 4.5 fm for 30-80%, 10-30% and 0-10% 

centralities, respectively, slightly increasing with energy [zbr11]. Unfortunately, the residual 

correlations have been taken into account for 62 GeV and 200 GeV data only, so that the 

results at lower energies (7.7, 11.5 and 39 GeV) are still preliminary. 

 

Using the empirical formula [kis14] 

 

                                   Rinv  [(t Ro
2 

+ Rs
2
 + Rl

2
)/3]

1/2
,              (5) 

 

one can calculate the proton Rinv in central collisions at small pt and |y| from the proton 

LCMS out, side and longitudinal radii, estimated with the help of the expanding fireball 

model (Eq. (4)) from the measured pion radii for central Au+Au collisions at 3 GeV [kra23] 

and central Pb+Pb collisions at SPS energies [21] as Ro  Rs  4.2 fm, Rl  2.7 fm and Ro = 

Rs = 5.1 fm, Rl = 3.2 fm, respectively. The corresponding values of Rinv are 3.8 and 4.6 fm. 

They are in reasonable agreement with Rinv of ~ 4.5 fm from the two-proton femtoscopy of 

the most central Au+Au collisions at 62 and 200 GeV [zbr11], as well as, - with the expected 

slight decrease of Rinv with the energy s
NN going down to 3 GeV. 

 

At t = 1, Ro = Rs and Rl = [3Rinv
2
 - 2Rs

2
]
1/2

 (calculated according to Eq. (5)), Eqs. (3’) at a 

given Rinv leads to a wide maximum of the quantum correction factor CA at Rs = Rl = Rinv. 

One can thus use the measured Rinv to calculate CA with a reasonable accuracy at moderate 

transverse momenta. E.g., putting Ro  Rs  Rl
  
 Rinv = 2-3-4 fm, Eq. (3’) at t = 1 yields CA = 

0.43-0.65-0.77 (0.38-0.62-0.76) for deuterons (tritons). From the measured coalescence 

parameter BA one can then extract the homogeneity volume Vhom= RoRsRl using Eq. (2) and 

check the expected relation: Vhom ≲ Rinv
3
. 

 

It should be stressed that, in the presence of a strong transverse flow, the substitution of the 

Gaussian transverse density profile by a box-like one leads to different out and side radii at 

non-zero pt (Ro < Rs at zero emission duration ) and different effective nucleon and A-

cluster temperatures (inverse slopes) Tp and TA [21], linearly increasing with A in agreement 

with experiment; for a Gaussian transverse density profile, these slopes are A-independent. 

 

Though the box-like profile makes the analytical BA calculation practically impossible, one 

may try to account for the violation of the Gaussian ansatz by the intuitive factor exp[b A (mt 

- m)] introduced in Eq. (3’’), similar to Eq. (6.4) of [21].  

 

In fact, the measured coalescence factors show a faster increase with mt as compared with the 

moderate one (mt
b(A-1)

, b ≲ 0.5), predicted by Eqs. (2) and (3’). I already mentioned the 

attempt in [zha22] to explain this fact by using the incorrect relation R
*
o = Ro/t instead of the 

true one R
*
o = t Ro. 

 



One should be however careful in the interpolation to pt
 
 0 and rather use the observed mt

 
-

dependence of the coalescence parameter BA than the introduced exponential factor, which 

may fail at higher transverse momenta. 

 

To be more quantitative, instead of Eq. (7) in the paper, I would present coalescence 

parameter BA in Eq. (2) and CA given in Eq. (3’’) with b = (1/Tp - 1/TA) for a box-like 

transverse density profile [21], making however a comment on its possible modification at 

higher transverse momenta and using b as a free parameter. 

 

As the theoretical coalescence parameter BA in (1) relates the produced numbers of A 

nucleons in continuous (at pi = P/A) and discrete spectrum A-cluster (with momentum P), one 

should multiply BA in (1) or (2) (or divide the experimental BA) by the residual correlation 

function [lyu88, 20] 

 

                    res = d
3A

N/(d
3
p1 .. d

3
pA)/[(d

3
N/d

3
p1) .. (d

3
N/d

3
pA)], 

 

measured outside the region of small relative velocities (affected by the FSI and QS 

correlations) and interpolated to zero relative velocities, responsible for the A-cluster 

formation. In heavy-ion collisions, one may expect independent nucleon production, so that 

res  1. 

 

Since BA is determined based on proton spectra only, its value can be affected by a possible 

difference between proton and neutron production. On the assumption of independent 

nucleon production, the experimental BA value should then be divided by the neutron to 

proton ratio Rnp to the power N, where N is equal to the number of neutrons in the A-cluster. 

Assuming further the same neutron and proton spectra, Rnp equals to the fugacity ratio n/p = 

exp[(n-p)/T], where i are possibly different neutron and proton chemical potentials at the 

fireball freeze-out. The correction factor (n/p)
N
 = exp[N(n-p)/T] then coincides with the 

one in Eq. (6.5) of [21].  

 

Taking into account that only a part of the neutron excess in the colliding nuclei is transferred 

to the fireball, one may estimate the upper limits of the fugacity ratio n/p for Ar+A 

collisions as 1.11, 1.15, 1.22, 1.30 and 1.37 for A = C, Al, Cu, Sn and Pb, respectively.  

Obviously, one may expect a noticeable neutron excess in the fireballs excited in collisions 

with heavy nuclei.  

 

As for the transfer of the initial neutron excess to the fireball, it decreases with the collision 

energy and Rnp approaches the initial value of ~1.5 in collisions of heavy ions at AGS 

energies only (see Fig. 25 of [41]). 

 

The neglect of the correction factor (n/p)
N
 leads to BA overestimation and corresponding 

underestimation of (Vhom)
A-1

. The extracted homogeneity volume Vhom is underestimated by a 

factor of (n/p)
N/(A-1)

. This factor is equal to n/p for deuterons or tritons; it is closer to 

unity, being (n/p)
c 
with ½  c < 1, for other clusters; e.g., c = ½ for He-3.  

Note that for the considered Ar+A collisions, the underestimation of the deuteron and triton 

Rcoal radii due to the neglected correction factor (n/p)
1/3 

is expected less than 10%. 

 



Since UrQMD estimate of Rnp is already used to calculate the proton phase-space density 

according to paper Eq. (10), one could do the same to correct the measured coalescence 

parameters BA (see below). 

 

As for the suppression factor A  N
A
, caused by a non-Gaussian tail of the nucleon 

emission function, it is substantially lower than unity at high energies due to a significant 

fraction of the nucleons from hyperon decays (N  0.5 in Au+Au collisions at top RHIC 

energies [zbr11, ada06] and 0.7-0.8 in p+Pb and S+Pb collisions at top SPS energies 

[bog99]). At our energy, N is closer to unity and its neglect, leading to overestimation of 

Vhom by a factor N
-A/(A-1)

, may be justified. The corresponding overestimation of Rcoal is 

maximal for deuterons, composing (N
-2/3

 - 1) = 7-16-27 % for N = 0.9-0.8-0.7. 

 

Note that the correction factors (n/p)
N
 > 1 and N

A 
< 1 partly compensate each other. 

 

Finally, since the homogeneity volume Vhom= RoRsRl, extracted from the coalescence 

parameter BA, is close to Rinv
3
 and represents its lower estimate, it is quite natural (instead of 

multiplying Vhom by rather arbitrary factor 3/2) to introduce the coalescence radius  

                                    Rcoal = Vhom
1/3

,  

allowing one (with such a definition of Rcoal) to directly check the relation Rcoal ≲ Rinv. 

 

The above definition of Rcoal was used in Eq. (B.5) of [bel21] with a misleading notation for it 

(Rinv instead of Rcoal). 

 

Note that such Rcoal values, recalculated from Fig. 15 (divided by the factor 1.145 = (3/2)
1/3

) 

lead to Rcoal range of 2.6-3.8 fm.  

 

For heavy systems, the Rcoal values agree with Rinv from two-proton femtoscopy of central 

heavy-ion collisions. Unfortunately, there is no femtoscopy information about Ar+A 

collisions to be compared with Rcoal = 2.6-2.8 fm.  

 

Assuming a volume A-scaling and scaling down by a factor (AAr/AAu)
1/3 

= 0.59 the radii Rcoal 

(Rinv) = 3.6 (3.8) fm, estimated from the two-pion femtoscopy of central Au+Au collisions at 

3 GeV [kra23], one arrives at Rcoal (Rinv) = 2.1 (2.2) fm.  

These numbers are close to Ar r.m.s. radius divided by 3 (composing 2.0 fm) and thus look 

too small for Ar collisions with heavier nuclei, indicating that the volume A-scaling of Vhom 

leads to underestimation of Rcoal.  

 

A more appropriate may be surface A
2/3 

scaling of Vhom, retaining the original longitudinal 

radius; indeed, multiplying Rcoal by a factor (AAr/AAu)
2/9 

= 0.70, leads to Rcoal (Rinv) = 2.5 

(2.7) fm in agreement with the extracted Rcoal values.  

However, neglecting the expansion of the collision zone, the geometrical volume and surface 

scalings should be taken with a caution. 

 

 

                                       Comments, questions and suggestions 

 

l. 317: 

it would be interesting to compare T0 -values with T* from Eq. (5);  

however, reference [37] is not available;  



note that the single-exponential fit is justified at mt >> m only and that T0 should then 

coincide with the blue shifted temperature in Eq. (5) (Eq. (19) in [sch93]).  

 

Answer:  

According to (3)    

⟨E_T ⟩ = ⟨m_T ⟩ − m = T0 + T0^2 /(T0 + m) --> <E_T> = 2 T0 for m = 0, i.e. corresponding 

to  3/2T* in formula (4)  

T0 is the m_t inverse slope measured for a particle with mass m (p,d,t), whereas T* is the 

inverse slope extrapolated to m = 0, i.e. T0 and T* values have different meaning. 

 

Comment: 

Eq. (8) below shows that < Et > in BW model is linear in the cluster mass m at sufficiently 

high m (m ≳ mp) only, so that the linear m-dependence cannot be extrapolated to m=0.  

As for Eq. (4) in the paper, see below the extended comment about its incorrectness. 

 

Note that BW model predicts the effective temperature T0 decreasing with mt, i.e., depending 

on the fit Et-interval. From Fig. 7, one may see that for protons, deuterons and tritons, the fit 

intervals are 0-0.5 GeV, 0-0.4 GeV and 0-0.35 GeV, respectively.  
 

The respective Et-variations of T0 in BW model (see Eq. (6) below) with T=100 MeV and s 

= 0.4 (<> = 0.267) are: 157-151 MeV, 230-183 MeV and 345-227 MeV, thus pointing to a 

possible problem with the <Et> extraction based on the single-exponential fits for deuterons 

and tritons. 

 

 

l. 357: 

perhaps a comment about the accuracy of Eq. (3) (based on a single-exponential fit) could be 

given;  

note that in [41] the measured mt points were combined with a two-exponential fit to 

determine <mt>. 

 

Answer:  

A single-exponential fit gives reasonable description of the m_t spectra in the BMN pt range, 

see Fig.7. We see no reason to use 2-exponential fit. We can add a sentence on that point.  

 

Comment: 

A reason might be a systematical error in the extracted temperature T due to neglected mt- 

dependence of the effective temperature T0. 

 

 

Eqs. (4), (5): 

a successful use in [41] of these equations to determine T and <> in agreement with BW 

model is likely accidental, as Eq. (4) combines non-relativistic (3/2T*) and relativistic () 

terms and Eq. (5) is valid in relativistic limit only (see Eq. (19) in [sch93]).  

It would be more correct to use BW model to extract T and <> (as done in [41]). 

 

Answer:  

Attempts to use the BW model for the fit do not give stable results. A parameterization with 

the T* and beta terms gives a robust result.   

 



Comment: 

Below, within the BW model, a dependence of <Et> on the temperature T and the transverse 

flow velocity  is given in Eq. (8) and its difference from the paper Eq. (4) points to the 

incorrectness of the latter. 

    

One can use Eqs. (6) and (7) from [sch93] (implemented as Eq. (8) in [41]) in a combined fit 

of the mt spectra of protons, deuterons and tritons to determine the temperature T and 

fireball-surface velocity s at a given flow profile power n  

(a linear profile n=1 is often used; parabolic profile n=2 is used in [sch93];  

note that <r> = s 2/(2+n)). 

 

Another possibility is a combined fit of the “measured” mean transverse kinetic energies   

                                          <Et> = < mt> - m,  

using Eq. (7) of [sch93] (Eq. (8) in [41]) to calculate <Et> on the assumption of a box-like 

transverse density profile:  

 

<Et> = ∫ dm
∞

m t ∫ 𝑑𝑟
𝑅

0
 r Et mt BesselK[1, mt Cosh[/T] BesselI[0, pt Sinh[/T]/  

            ∫ 𝑑𝑚
∞

𝑚 t ∫ 𝑑𝑟
𝑅

0
 r mt BesselK[1, mt Cosh[/T] BesselI[0, pt Sinh[/T],       (6) 

 

where  = ArcTanh[s (r/R)
n
] is the collective transverse flow rapidity.  

 

Such a fit of the integrated data, though less informative and suffering from the approximate 

<Et> determination based on an exponential interpolation to the unmeasured mt-region, may 

appear more robust. In the present paper, it was done using paper Eqs. (4) and (5). In fact, 

instead of these incorrect equations, one should fit the parameters T and s, using Eq. (6). 

 

To simplify the extraction of these parameters, one may consider the limit of a large mass-to-

temperature ratio z = m/T >> 1 and a small squared surface velocity s
2
 << 1 and calculate 

<Et> up to terms O(1/z
2
) and O(s

4
) as:  

 

                                 <Et> = T{[1+3/(2z)] + s
2
z(1+1/z)(1+3/z)/[2(n+1)]}.          (7) 

 

Note that Eq. (7) slightly (negligibly) differs from previous Eq. (8) due to the account of the 

higher order T/mt-terms in the mt-integration, leading to the substitution (15+16z+4z
2
) → 

(12+16z+4z
2
) = 4(1+z)(3+z). 

 

For m = mp, md and mt, the relative differences of Eq. (7) from the exact values calculated 

according to Eq. (6) at T = 100 MeV and s = 0.4 (s = 0) compose:  

-2.23% (+1.12%), -4.27% (+0.30%) and -5.27% (+0.14%), respectively.  

 

A better approximation,  

 

         <Et> = T{[1+3/(2z)-9/(8z
2
] +  

                         s
2
z[(1+1/z)(1+3/z)-9/(2z

3
)]/[2(n+1)]+ 

                         s
4
z[(3+n(6+5n))+(9+n(18+17n))/z+3(3+n(6+7n))/(8z

2
)- 

                                                        9(1+n(2+9n))/(8z
3
)]/[8(1+n)

2
(1+2n)]},       (8) 

 



which is valid up to terms O(1/z
3
) and O(s

6
), allows one to decrease the above relative 

differences below a percent level; they compose -0.36% (+0.00%), -0.51% (+0.00%) and -

0.61% (+0.00%), respectively. At typical temperatures of a hundred MeV, one can thus use 

Eq. (8) for practical calculations at small or moderate surface velocities s. 

 

Note that, at temperatures T of a hundred MeV, the s
2
-terms in Eqs. (7) and (8) are nearly 

linear in the cluster mass m down to proton mass and that they approximately coincide with 

m(-1) m<>
2
/2 in paper Eq. (4) for a constant (n=0) collective transverse velocity only. 

Also, the m-independent and <>-dependent first term in paper Eq. (4) differs from the first 

terms in square brackets in Eqs. (7) and (8), which are m-dependent and <>-independent. 

 

Using the linear fits from Fig. 12, one can calculate <Et> at deuteron and triton masses and 

solve the corresponding two equations (7) for two variables:  

T and b = s(n)/(n+1)
1/2

 = s(0) = <>0.  

See the results below and note that <>n = s(n) 2/(n+2) = b 2(n+1)
1/2

/(n+2): 

 

                           <Et(md)>   <Et(mt)>     T       <>0     <>1     <>2  

                              MeV         MeV       MeV 

            Ar+Al        209           227         134     0.222   0.210   0.193 

            Ar+Cu       227           258         124     0.276   0.260   0.239 

            Ar+Sn        237          286         101     0.334   0.315   0.289 

            Ar+Pb        223          258         114     0.289   0.272   0.250 

 

Compared with paper Table 3, one may see that T extracted from the BW model is about 30 

MeV higher, while the mean velocity is about the same (quite the same for n=1 flow profile).  

 

The lower collective transverse velocity <>, as compared with the results at SPS energies 

[41, alt08], is in agreement with the longer re-scattering phase and thus more thermal energy 

transferred to the collective flow at higher collision energies.  

 

A problem represents the temperature parameter T, which is expected to decrease with 

decreasing collision energy and, at our energy, one may expect T ≲ 100 MeV. The extracted 

larger temperature parameters may thus indicate systematic errors of the experimental <Et>-

values, extracted from the single-exponential Et-fits. 

 

One can estimate possible systematic errors in the parameters s and T, extracted from the 

<Et> values with the help of Eq. (8), comparing them with those obtained from combined 

PDT fits of the proton, deuteron and triton mt-spectra.  

 

The <Et> values, reported in paper Fig. 12 at yCMS=0 (y=1.08), were obtained from single-

exponential fits by averaging the data at y= 1.0, 1.2 and 1.4. To avoid a problem of averaging 

y-dependent data with different pt -acceptance, I have used BMN dN/dmtdy data at y=1.4 

with the largest pt -acceptance, allowing for the most reliable mt-fits. 

In principle, the data at y= 1.0 and 1.2 could be included in the combined mt-fits on the 

assumption of y-independent parameters s and T – the results are added at the end. 

 

The fit results for Al, Cu, Sn and Pb targets using the single-exponential in mt and BWM with 

a linear transverse velocity profile (n=1) are given in tables below;  



the three <Et> values for the combined PDT fits correspond to protons, deuterons and tritons, 

respectively; the latest data from October 2024 and total (stat+syst) errors for mt -spectra are 

used; the 2
nd

 (blue) rows show T and <Et> with total errors from Mikhail’s fits using 

statistical errors for mt -spectra: 

 

Ar+Al     y=1.4     

--------------------------------------------------------------------------------------------- 

                                  𝜒2
/ndf         s          T    MeV          <Et>  MeV 

--------------------------------------------------------------------------------------------- 

Exp[-mt/T]      P         9.4/ 8          -          159.6±  4.3        182.8 ±  5.5       

                                                                  160.8± 3.9        184.3 ±  5.0 

                        D        2.8/ 8          -          192.6±18.6        210.5 ± 21.9 

                                                                  191.5±17.4       209.2 ± 20.5                         

                        T        4.9/ 4           -          127.9±37.0       133.5 ± 40.2   

                                                                  129.5±36.9       135.2 ± 40.1 

                   PDT     21.3/22           -          161.8±  4.2      185.6  174.7  170.6   

 

BWMn=1        P         9.3/ 8         .0         150.2±  3.8       182.0 ±  5.6                            

                                   9.5/ 8          .3         125.7±  3.8       183.5  

                        D        2.8/ 8          .0         184.6±17.2       209.8 ± 22.3                                

                                   2.9/ 8          .3         136.9±17.4       209.1                                

                        T        4.9/ 4           .0         125.3±35.5      133.4 ± 40.3              

                                   5.3/ 4          .3           58.2±34.1      132.3                  

                   PDT      22.2/22          .0         152.5± 3.7      185.2  170.0  164.4        

                                 19.8/22         .3          126.0± 3.7       

                   PDT      19.8/21   .279±.081  129.7±14.3     184.3  191.7  206.5                               

 

Eq. (8) & <Et>         0.00/1    .279±.094  129.7±16.1       

BWMn=1 PDT 

Eq. (8) & <Et>         3.59/1    .206±.131  139.3±16.7       

Exp[-mt/T] P,D,T      

--------------------------------------------------------------------------------------------- 

 

Ar+Cu     y=1.4   

--------------------------------------------------------------------------------------------- 

                                𝜒2
/ndf           s          T    MeV          <Et>  MeV 

--------------------------------------------------------------------------------------------- 

Exp[-mt/T]      P        4.8/8            -          170.1± 3.9        196.2 ± 5.0       

                                                                  171.5± 3.7        198.0 ± 4.8 

                        D       3.0/8            -          200.4±16.9       219.8 ±20.0       

                                                                  201.6±16.4       221.1 ±19.4 

                        T       1.6/4             -          190.8±34.2       202.9 ±38.4    

                                                                  184.4±31.3       195.8 ±35.1 

                   PDT     13.2/22           -          184.4± 3.8        214.7  200.9  195.8        

                              

BWMn=1        P        4.9/8           .0         159.5± 3.5        195.1 ± 5.3     

                                   4.8/8           .3         135.0± 3.5        197.1              

                        D        3.0/8           .0         191.7±15.5       218.8 ±20.3    

                                   3.1/8           .3         143.8±15.9       218.2        



                        T        1.6/4            .0         185.2±32.3      202.6 ±38.7       

                                   1.4/4           .3         107.3±31.3      190.4                       

                   PDT      14.8/22         .0          161.9± 3.4       198.5  181.5  175.3                       

                   PDT      10.2/21   .290±.061  137.1±11.5      197.7  205.4  221.3                                      

 

Eq. (8) & <Et>         0.00/1    .290±.084  137.2±15.0       

BWMn=1 PDT 

Eq. (8) & <Et>         0.75/1    .308±.078  133.4±14.8       

Exp[-mt/T] P,D,T 

--------------------------------------------------------------------------------------------- 

 

 

y=1.4     Ar+Sn 

---------------------------------------------------------------------------------------------          

                                 𝜒2
/ndf          s          T    MeV           <Et>  MeV 

--------------------------------------------------------------------------------------------- 

Exp[-mt/T]      P        2.5/8            -           168.7±  4.5       194.4 ± 5.8      

                                                                   171.3± 4.7        197.7 ±6.1 

                        D       2.6/8            -           225.2±16.0       249.3 ±19.3    

                                                                   216.5±14.3       238.9 ±17.3 

                        T        3.7/4            -           180.5±40.5       191.4 ±45.2         

                                                                   203.4±41.7       217.1 ±46.6 

                   PDT      23.9/22          -           177.9± 5.1       206.3  193.3  188.5      

   

BWMn=1        P        2.5/8           .0         158.5±  4.6       193.6 ± 6.9        

                                   2.6/8           .3         133.6±  4.6       195.1                               

                        D        2.6/8           .0         214.3±14.6       247.9 ±19.6                                         

                                   2.6/8           .3         166.3±16.6       248.0                                             

                       T         3.7/4           .0          175.4±38.3       191.1 ±45.5                                  

                                  4.1/4            .3         107.9±41.8       191.1                                         

                   PDT      26.7/22         .0          167.5± 4.6       206.4  188.4  181.8                                       

                   PDT      11.7/21  .385±.036   116.9±10.4      194.9  223.0  257.3  

 

Eq. (8) & <Et>         0.00/1    .387±.064  116.9±15.2       

BWMn=1 PDT 

Eq. (8) & <Et>         3.97/1    .393±.063  115.8±15.1       

Exp[-mt/T] P,D,T 

--------------------------------------------------------------------------------------------- 

 

Ar+Pb     y=1.4   

--------------------------------------------------------------------------------------------- 

                                𝜒2
/ndf           s          T    MeV           <Et>  MeV 

--------------------------------------------------------------------------------------------- 

Exp[-mt/T]      P        4.1/8            -          177.6± 7.1        205.9 ± 9.2  

                                                                  169.2± 6.8        195.0 ± 8.8 

                        D       .46/8            -          188.9±29.6       206.2 ±34.8 

                                                                  190.9±27.7       208.5 ±32.5 



                        T       4.0/4             -          209.5±46.4       224.0 ±52.6 

                                                                  193.9±42.6       206.4 ±48.3 

                   PDT       9.2/22           -          179.4± 6.9        208.2  195.1  190.2   

                                      

BWMn=1        P        4.4/8          .0          166.4± 6.3        204.9 ± 9.7                                     

                                   3.9/8          .3          141.5± 6.3        206.7                                        

                        D        .47/8          .0          181.0±27.3       205.3 ±35.2                              

                                   .49/8          .3          132.7±27.9       203.7                                      

                        T        4.0/4           .0          202.7±43.6       223.4 ±53.0                               

                                   3.9/4          .3          124.3±43.9        211.1                                   

                   PDT      10.0/22         .0          168.4± 6.1        207.7  189.5  182.9                     

                   PDT        8.4/21   .267±.105  146.7±18.5       206.4  209.2  221.2  

                                       

Eq. (8) & <Et>         0.00/1    .267±.140  146.8±23.9       

BWMn=1 PDT 

Eq. (8) & <Et>         0.01/1    .268±.140  146.3±23.9       

Exp[-mt/T] P,D,T 

--------------------------------------------------------------------------------------------- 

 

One may conclude: 

- the results of single-exponential fits from Mikhail (blue) differ because of used 

statistical errors in fitting the mt -spectra; if doing the same, the fitted T ± T values 
coincide; 

- the single-exponential fits, as well as the similar BWM fits with s = 0 and 0.3, yield 
the expected <Et> increase with the cluster mass for Ar+Pb data only; 

- a more complex BWM mt-distribution with s = 0.3 (which may be considered as a 
combination of exponential distributions) yields the same <Et>-values within the 
errors, thus demonstrating that the single-exponential parametrization is sufficient to 
estimate <Et> from the present BMN data; 

- both the <Et>-fits according to Eq. (8) and the combined PDT mt-fits appear to be 
quite robust; taking into account systematic errors, they yield 𝜒2/ndf  ≲ 1, except for 
the <Et>-fits of Al and Cu data, when 𝜒2/ndf   4/1;  

- a sufficient accuracy of Eq. (8) is confirmed by coinciding s and T parameters from 
the combined PDT mt-fits and the <Et>-fits with the <Et> values determined in the 
combined PDT mt-fits; 

- the <Et>-fits with the <Et>-values from exponential mt-fits recover within the errors 

the s and T parameters from the combined PDT mt-fits; the parameter errors in the 
<Et>-fits are 20-70% higher due to integrated out a part of the information; 

- typically, s  0.3 and T  120-150 MeV in the combined PDT mt-fits, with 10-40% and 
~10% errors, respectively.  

 

Some more remarks: 

- for proton spectra from Al and Cu targets, the exponential fits were also done with 
the centers of the mt-bins shifted to those of the pt-bins, leading to a negligible T-
increase by 0.2 MeV; also, a negligible T-change of -0.2 (+0.5) MeV for Al (Cu) targets 
is obtained by removing the last mt-point; 

- there is almost 100% anticorrelation of the s and T parameters in the separate 
proton, deuteron and triton mt-fits, thus making impossible the determination of 



these parameters with reliable errors in such fits; this problem is cured in the 
combined PDT mt-fits; 

- one may use the <Et> fits as an alternative to the combined PDT mt-fits; I would 
however prefer combined PDT fits, which are more informative, substantially robust 
and avoid the assumption of exponential form of the mt-spectra, used to extract 
<Et>; 

- there was a problem in Mathematica with the fitting function represented by a 
numerical integral; a huge time was required, since Mathematica automatically 
increased precession to achieve a reliable calculation of the derivatives and 
covariance matrix; the problem is solved by constructing a sufficiently accurate 
interpolating analytical function for dN/(mtdmtdy) from BWM, using the expansion in 

powers of the surface velocity s; the expansion up to s
16 was required to 

interpolate the BWM function with sufficient accuracy up to s ~ 0.6, guaranteeing 

the correct fit parameters and their covariance matrix at typical s ~ 0.3; 
- Vadim’s results point to an accuracy problem with the Minuit (which is less 

elaborated than the Mathematica fit procedure) due to too small errors in s and T 
parameters in separate proton, deuteron and triton fits and absent anticorrelation of 
these parameters in the covariance matrix; this problem can likely be overcome by 
using the interpolating function F for dN/(mtdmtdy) from BWM;   

- in Mathematica notation, F reads as 

(bs = s, mt = mt, m is the cluster mass and N is the normalization parameter; N is 
multiplied by Exp[m/T] to compensate Exp[-m/T] from the Bessel functions): 
 
 F[mt_, m_, N_, bs_, T_, n_] :=  
(zt = mt/T; vt = Sqrt[mt^2 - m^2]/mt;  
 
N Exp[m/T] T zt (BesselK[1, zt]/2  
+  
      bs^2 ((2 + vt^2 zt^2) BesselK[1, zt] -  
        2 zt BesselK[2, zt])/(8 (1 + n))  
+  
      bs^4 ((24 + 8 (1 + 3 vt^2) zt^2 +  
          vt^4 zt^4) BesselK[1, zt] -  
       8 zt (2 + vt^2 zt^2) BesselK[2, zt])/(128 (1 + 2 n))  
+  
      bs^6 ((720 + 216 (2 + 5 vt^2) zt^2 +  
          18 vt^2 (4 + 5 vt^2) zt^4 + vt^6 zt^6) BesselK[1, zt] –  
          6 zt (72 + 8 (1 + 9 vt^2) zt^2 +  
          3 vt^4 zt^4) BesselK[2, zt])/(4608 (1 + 3 n)) 
 +  
      bs^8 ((40320 + 11520 (3 + 7 vt^2) zt^2 +  
          96 (4 + 15 vt^2 (8 + 7 vt^2)) zt^4 +  
          32 vt^4 (9 + 7 vt^2) zt^6 + vt^8 zt^8) BesselK[1, zt] –  
          32 zt (720 + 24 (8 + 45 vt^2) zt^2 +  
          6 vt^2 (4 + 15 vt^2) zt^4 + vt^6 zt^6) BesselK[2, zt])  
+  
      bs^10 ((3628800 + 1008000 (4 + 9 vt^2) zt^2 +  



          960 (116 + 525 vt^2 (4 + 3 vt^2)) zt^4 +  
          2400 vt^2 (4 + 21 vt^2 (2 + vt^2)) zt^6 +  
          50 vt^6 (16 + 9 vt^2) zt^8 + vt^10 zt^10)  
          BesselK[1, zt] –  
          10 zt (201600 + 2304 (39 + 175 vt^2) zt^2 +  
          96 (4 + 240 vt^2 + 525 vt^4) zt^4 +  
          160 vt^4 (3 + 7 vt^2) zt^6 + 5 vt^8 zt^8)  
          BesselK[2, zt])/(29491200 (1 + 5 n)) 
+  
       bs^12 ((479001600 + 130636800 (5 + 11 vt^2) zt^2 +  
            17280 (1784 + 1575 vt^2 (16 + 11 vt^2)) zt^4 +  
            11520 (4 + 468 vt^2 + 2835 vt^4 + 1155 vt^6) zt^6 +  
            5400 vt^4 (16 + 96 vt^2 + 33 vt^4) zt^8 +  
            72 vt^8 (25 + 11 vt^2) zt^10 + vt^12 zt^12)  
            BesselK[1, zt] -  
            24 zt (10886400 + 5760 (1208 + 4725 vt^2) zt^2 +  
            2880 (28 + 948 vt^2 + 1575 vt^4) zt^4 +  
            1440 vt^2 (4 + 80 vt^2 + 105 vt^4) zt^6 +  
            50 vt^6 (16 + 27 vt^2) zt^8 + 3 vt^10 zt^10)  
            BesselK[2, zt])/(4246732800 (1 + 6 n))  
+  
       bs^14 ((87178291200 + 23471078400 (6 + 13 vt^2) zt^2 +  
            241920 (39992 + 24255 vt^2 (20 + 13 vt^2)) zt^4 +  
            40320 (976 + 63672 vt^2 + 8085 vt^4 (36 + 13 vt^2)) zt^6 +  
            35280 vt^2 (64 + 2352 vt^2 + 7920 vt^4 + 2145 vt^6) zt^8 +  
            1176 vt^6 (400 + 1650 vt^2 + 429 vt^4) zt^10 +  
            98 vt^10 (36 + 13 vt^2) zt^12 + vt^14 zt^14)  
            BesselK[1, zt] -  
            14 zt (3353011200 + 138240 (20429 + 72765 vt^2) zt^2 +  
            17280 (3464 + 86912 vt^2 + 121275 vt^4) zt^4 +  
            11520 (4 + 756 vt^2 + 8337 vt^4 + 8085 vt^6) zt^6 +  
            840 vt^4 (144 + 1600 vt^2 + 1485 vt^4) zt^8 +  
            168 vt^8 (25 + 33 vt^2) zt^10 + 7 vt^12 zt^12)  
            BesselK[2, zt])/(832359628800 (1 + 7 n))  
+  
        bs^16 ((20922789888000 + 5579410636800 (7 + 15 vt^2) zt^2 +  
            232243200 (15388 + 21021 vt^2 (8 + 5 vt^2)) zt^4 +  
            77414400 (344 + 3 vt^2 (5496 + 7007 vt^2 (3 + vt^2))) zt^6 +  
            161280 (64 + 15 vt^2 (1280 + 7 vt^2 (3680 + 9152 vt^2 +  
                                                                                 2145 vt^4))) zt^8 +  
            752640 vt^4 (48 + 944 vt^2 + 429 vt^4 (5 + vt^2)) zt^10 +  
            18816 vt^8 (100 + 312 vt^2 + 65 vt^4) zt^12 +  
            128 vt^12 (49 + 15 vt^2) zt^14 + vt^16 zt^16)  
            BesselK[1, zt] –  
            128 zt (87178291200 + 14515200 (6320 + 21021 vt^2) zt^2 +  
            3628800 (824 + 17036 vt^2 + 21021 vt^4) zt^4 +  
            201600 (32 + 3288 vt^2 + 26376 vt^4 + 21021 vt^6) zt^6 +  



            5040 vt^2 (64 + 7 vt^2 (528 + 3184 vt^2 + 2145 vt^4)) zt^8 +  
            1176 vt^6 (80 + 600 vt^2 + 429 vt^4) zt^10 +  
            98 vt^10 (12 + 13 vt^2) zt^12 + vt^14 zt^14)  
            BesselK[2, zt])/(213084064972800 (1 + 8 n))) 

                        ) 

 

Fits of the combined mt-spectra in “central” rapidities y = 1.0, 1.2 and 1.4 (1.1 and 1.4 for 

tritons), assuming y-independent parameters s and T, but different normalization parameters 

at each rapidity: 

 

Ar+C      y=1.0 (0.9 for deuterons), 1.2, 1.4       (1.1 and 1.4 for tritons)    

--------------------------------------------------------------------------------------------- 

                                  𝜒2
/ndf         s          T    MeV          <Et>  MeV 

--------------------------------------------------------------------------------------------- 

Exp[-mt/T]      P       21.0/20         -          150.7± 5.8        171.6 ±   7.3       

                        D      17.6/22         -          128.0±14.3       136.2 ± 16.1 

                        T        4.6/6            -          159.4±53.2       168.0 ± 58.8   

                   PDT      44.8/50          -          148.7± 5.3        169.0  159.6  156.2   

       

BWMn=1        P       20.9/20         .0         141.9± 5.1        170.5 ±  7.4                                  

                                  21.0/20         .3         117.9± 5.2        172.3                                   

                        D       17.6/22         .0         124.2±13.5       135.9 ± 16.2                                     

                                  18.3/22         .3           77.3±13.8       134.0                                        

                        T         4.6/6            .0         155.4±50.6       167.8 ± 59.0                                        

                                    4.4/6            .3           74.2±44.6      150.9                                      

                   PDT        44.3/50         .0          140.5± 4.8       168.5  155.4  150.6                                

                   PDT        44.3/49  .001±44.0   140.5±16.6      168.5  155.4  150.6  

                                

Eq. (8) & <Et>         0.00/1     .004±6.30   140.5±18.3       

BWMn=1 PDT 

Eq. (8) & <Et>           1.7/1     .000±8⋅10
7
  140.4±18.3       

Exp[-mt/T] P,D,T 

--------------------------------------------------------------------------------------------- 

 

 

Ar+Al     y=1.0, 1.2, 1.4 (1.1 and 1.4 for tritons)    

--------------------------------------------------------------------------------------------- 

                                  𝜒2
/ndf         s          T    MeV          <Et>  MeV 

--------------------------------------------------------------------------------------------- 

Exp[-mt/T]      P     105.6/20         -          160.5± 3.2        184.0 ±   4.1       

                        D      11.5/25         -          193.4±13.8       211.5 ± 16.3 

                        T        7.5/9            -          163.1±29.5       172.1 ± 32.7   

                   PDT    131.2/56          -          163.0± 3.1        187.1  176.0  171.9   

       

BWMn=1        P     106.0/20         .0         150.7± 2.8        182.7 ±  4.2                                  

                                105.3/20         .3         126.7± 2.9        185.0                                   

                        D       11.6/25         .0         185.2±12.7       210.6 ± 16.5                                     

                                  11.7/25         .3         137.2±13.0       209.5                                        

                        T         7.5/9            .0         158.9±28.0       171.8 ± 32.8                                        



                                    7.9/9            .3           87.1±29.5      166.2                                      

                   PDT      134.0/56         .0         153.3± 2.8       186.3  170.9  165.3                                

                   PDT      126.8/55  .291±.053  128.6± 9.8       185.5  194.8  211.4  

                                

Eq. (8) & <Et>         0.00/1     .291±.070   128.6±12.4       

BWMn=1 PDT 

Eq. (8) & <Et>           2.6/1     .289±.070   128.3±12.4       

Exp[-mt/T] P,D,T 

--------------------------------------------------------------------------------------------- 

 

Ar+Cu     y=1.0, 1.2, 1.4 (1.1 and 1.4 for tritons) 

--------------------------------------------------------------------------------------------- 

                                𝜒2
/ndf             s           T    MeV          <Et>  MeV 

--------------------------------------------------------------------------------------------- 

Exp[-mt/T]      P       99.4/20           -          169.4± 2.5         195.3 ± 3.2                                            

                        D        6.5/25           -           202.6±12.3       222.4 ±14.6                                         

                        T        6.9/9              -          208.5±30.9        222.9 ±35.0                                          

                   PDT    122.8/56            -          171.6± 2.5         198.1  186.0  181.5   

                                       

BWMn=1        P    100.6/20           .0         158.4± 2.2         193.5 ± 3.3                                       

                                 98.8/20           .3         134.7± 2.3         196.7                                    

                        D        6.6/25           .0         193.6±11.3        221.2 ±14.8                                  

                                   6.7/25           .3         145.7±11.6        220.7                                        

                        T        6.7/9             .0          201.8±29.4        222.4 ±35.7                                      

                                   6.6/9             .3         124.3±30.1        211.1                                       

                   PDT     191.5/56           .0         160.7± 2.2        196.8  180.0  173.9                                       

                   PDT     112.9/55   .316±.040   132.2± 8.1        197.1  209.7  230.0  

                                        

 

Eq. (8) & <Et>          0.00/1    .317±.061   132.2±11.5       

BWMn=1 PDT 

Eq. (8) & <Et>            .54/1    .353±.053   124.2±11.2       

Exp[-mt/T] P,D,T 

--------------------------------------------------------------------------------------------- 

 

Ar+Sn     y=1.0, 1.2, 1.4 (1.1 and 1.4 for tritons)     

--------------------------------------------------------------------------------------------- 

                                  𝜒2
/ndf         s          T    MeV          <Et>  MeV 

--------------------------------------------------------------------------------------------- 

Exp[-mt/T]      P       54.8/20         -          169.6± 3.3       195.6 ±   4.2                                         

                        D      19.7/25         -          238.2±11.2      265.0 ± 13.6                                          

                        T         8.5/9           -          230.1±33.1      247.5 ± 37.9                                          

                   PDT     135.9/56         -          181.8± 3.3      211.3  197.9  192.9   

                                      

BWMn=1        P      55.5/20         .0         158.7± 3.0       193.9 ±  4.5                                      

                                 54.4/20         .3         134.9± 3.0       197.0                                        

                        D      19.6/25         .0         226.0±10.1      263.1 ± 13.8                                     

                                 19.7/25         .3         178.2±10.4      264.1                                          

                        T         8.5/9           .0         221.9±30.9      246.6 ± 38.2                                 



                                   8.6/9           .3         147.0±33.4      239.1                                         

                   PDT     147.4/56         .0         170.4± 3.0      210.6  192.0  185.2                                  

                   PDT       86.3/55  .405±.020  112.8± 6.7      195.5  228.7  267.7  

                                       

 

Eq. (8) & <Et>         0.00/1   .407±.045   112.8±11.2       

BWMn=1 PDT 

Eq. (8) & <Et>           3.8/1   .479±.037     95.9±10.6       

Exp[-mt/T] P,D,T 

--------------------------------------------------------------------------------------------- 

 

Ar+Pb     y=1.0, 1.2, 1.4 (1.1 and 1.4 for tritons)  

--------------------------------------------------------------------------------------------- 

                                𝜒2
/ndf             s           T    MeV          <Et>  MeV 

--------------------------------------------------------------------------------------------- 

Exp[-mt/T]      P     144.1/20           -           167.1± 2.7       192.4 ± 3.5                                   

                        D        9.4/25            -          242.8±19.6      270.6 ±23.8                                        

                        T         8.6/9             -          179.7±26.1       190.5 ±29.1                                         

                   PDT    187.1/56            -          170.8± 2.7        197.1  185.1  180.6   

                                

BWMn=1        P     146.5/20           .0         156.3± 2.4       190.5 ± 3.6                                

                                142.7/20          .3          132.7± 2.4       193.7                             

                        D         9.5/25           .0         230.2±17.7       268.7 ±24.2 

                                    9.4/25           .3         182.9±18.2       270.5                                  

                        T          8.6/9            .0          174.7±24.7       190.2 ±29.3                                

                                     9.1/9            .3         100.0±26.4      181.6                              

                   PDT      194.4/56          .0          159.9± 2.4       195.6  179.0  173.0                             

                   PDT      171.6/55   .342±.039   125.7± 8.9       194.8  212.9  238.2  

                                 

 

Eq. (8) & <Et>          0.00/1    .343±.062   125.8±12.5       

BWMn=1 PDT 

Eq. (8) & <Et>            8.7/1    .343±.062   124.5±12.5       

Exp[-mt/T] P,D,T 

--------------------------------------------------------------------------------------------- 

 

 

Summary of the BWM fits of the mt-data at y = 1.0 (0.9), 1.2, 1.4 (1.1 and 1.4 for tritons) 

1
st
 row – results of the combined PDT mt-fit,  

2
nd

 row (blue) – results of the <Et>-fit, using Eq. (8) with <Et> calculated from the 

exponential mt-fit 

                   PDT      126.8/55  .291±.053  128.6± 9.8       185.5  194.8  211.4  

                                

Eq. (8) & <Et>           2.6/1     .289±.070   128.3±12.4       

 

      ---------------------------------------------------------------------------------------------    

                              Ar+C           Ar+Al          Ar+Cu          Ar+Sn          Ar+Pb 

      --------------------------------------------------------------------------------------------- 

          s            .001±44.0     .291±.053     .316±.040    .405±.020      .342±.039       



                           .000±8⋅10
7
    .289±.070    .353±.053    .479±.037      .343±.062          

        T, MeV      140.5±16.6    128.6± 9.8    132.2± 8.1   112.8± 6.7    125.7± 8.9 

                           140.4±18.3   127.0±10.6   124.2±11.2   95.9±10.6   124.5±12.5 

         𝜒2
/ndf          44.3/49        126.8/55        112.9/55         86.3/55         171.6/55    

                               1.7/1              2.6/1              .54/1             3.8/1               8.7/1     

      -------------------------------------------------------------------------------------------------     

 

One may conclude: 

 

- the single-exponential fits, as well as the similar BWM fits with s = 0 and 0.3, yield 
the expected <Et> increase for deuterons, giving however <Et> for tritons smaller 
than for deuterons, thus leading to a large 𝜒2/ndf of 3-9/1 except for the Cu target; 

- the <Et> fits according to Eq. (8) with the <Et>-values from exponential mt-fits 

recover within one or two standard deviations the s and T parameters obtained in 
the combined PDT mt-fits;  

- the parameter errors in the <Et> fits are 10-80% higher than in the combined PDT mt-
fits;  

- nearly the same parameters from the <Et> and combined PDT mt-fits confirm 
sufficient stability of the latter, so that the use of the approximate robust <Et> 
procedure (which integrates out a part of the available information and leads to 
higher errors) is not required;    

- typically, in the combined PDT mt-fits, s  0.3-0.4 and T  110-130 MeV with about 
5-18% and 6-8% errors, respectively;  

- the 𝜒2/ndf  of 2- 3 in the combined PDT mt-fits indicates an underestimation of the 
systematical errors and may thus call for an increase of the parameter errors by a 
factor (𝜒2/ndf)1/2 of 1.4-1.7; 

- the increased  𝜒2/ndf as compared with the fits at y=1.4 may indicate a violation of 

rapidity independence of the parameters s and T, when doing combined fits of the 
mt-spectra at “central” rapidities y = 1.0, 1.2, 1.4 (1.1 and 1.4 for tritons). 

 

Compared with Vadim’s fit results from August 26, one may see that he got: 

 

- essentially smaller parameter errors;  

since a strong s - T anticorrelation should lead to huge parameter errors in separate 
fits of proton, deuteron and triton spectra, the small Minuit errors point to a 
problem, as also noticed by Vadim;  
the problem can be solved with the help of the analytical interpolating BWM 
function;  

- reasonable 𝜒2/ndf -values, in contrast to large values in my fits (a difference may be 
due to Vadim’s fits of averaged spectra at y=1.0, 1.2, 1.4); 

- about the same s (= 1.5 <> at n=1) and by ~ 10 MeV smaller T; 
   
  

l. 424:  

BA  Veff 
1-A 

in any coalescence model
 
(thermodynamic approach is not applicable to direct 

A-cluster production due to a small binding energy); in [21], hydrodynamic motivated 

parametrization of expanding fireball is used to describe the initial nucleon system 

participating in the coalescence process.  



 

Answer:  

change in the draft: thermodynamic approach -> coalescence models 

 

 

Eq. (7):  

make this equation more quantitative (similar to Eq. (9) in [48]), substituting it by Eq. (2) 

(with CA given in Eq. (3’)), multiplied by the neutron-to-proton correction factor (n/p)
N
 and 

a phenomenological factor exp[b A (mt -m)], the latter suggested in the context of the box-

like density profile with b = 1/Tp - 1/TA [21], making a comment on its possible modification 

at higher transverse momenta and using b as a free parameter. 

 

Answer: 

it could be done, i.e., the equation could be written more precisely  

 

Comment: 

I have simplified the notation of Eq. (2) and (3’), introducing, instead of the cluster radii RA, 

the radii dA
 
= nA RA.  

Also, the suppression factor A was introduced, related to the nucleon “purity” factor N: A 

 N
A
.  

Also, CA is now given in Eq. (3’’), taking into account the phenomenological factor exp[b A 

(mt -m)] due to a violation of the Gaussian transverse density profile [21]. 

 

Note a different notation for masses and transverse masses: here (m = mp) and in the paper (m 

= mA). In Eqs. (2) and (3’), one should therefore make the substitutions:  

                  mt  mpt   

      A (mt -m)  (mt -m) 

 

 

l. 430:  

transverse momentum slopes  transverse mass inverse slopes 

 

Answer: OK 

 

 

l. 443-444:  

Eq. (7) predicts exponential fit in mt-m  pt
2
/(2m) at small pt (not exponential in pt). Also, the 

power-like in (mt/m) of BA due to its denominator leads to pt
2
 (or (mt-m)) dependence at 

small pt. Therefore, the interpolation of the experimental BA to pt = 0 should be done by a 

polynomial or an exponential in (mt-m). 

 

Answer:  

replacement of a*exp(b*pt) to a*exp(b*(mt-m)) increased the resulting parameter “a” (B_A) 

values by a factor of 1.5; 1/mt^(A-1) term before exp change “a” value only little, but effect 

the slope b value. 

 

Comment: 

the 50% BA increase due to exp[b (mt-m)] fit is larger than the expected effects of the 

neutron-to-proton ratio and the nucleon “purity” and should likely be included in the 

systematic error if there are arguments for a linear in pt dependence of BA at small pt. 



 

Also note, that the factor 1/mt
b(A-1)

 actually becomes mt
b(A-1)

 (where b ≲0.5) due to mt
 
-

dependence of the LCMS femtoscopic radii (decreasing as1/mt
b
). 

 

 

Fig.13(b):  

the scale for Ar+Sn  t+X should be multiplied by 10
3
.   

 

Answer: done 

 

 

l. 456:  

As explained in the text, it is natural to determine Rcoal = (Vhom)
1/3

, where Vhom = Rs
2
Rl at pt = 

0 (when Ro
 
= Rs by definition) and becomes maximal at Ro

 
= Rs

 
= Rl = Rinv and equal to Rinv

3
. 

One can thus directly compare Rcoal and Rinv and check the inequality Rcoal  Rinv. 

At the same time, it will serve as a consistency check of the CA calculation (see a discussion 

after Eq. (5) and the next comment). 

 

Answer: We used equations (11) and (14) from [48] to calculate R_t^2*R_l values from 

B_A. They do not include (n/p)^(A-1) factors.  

We could apply (n/p)^(A-1) factors in equation (7) if  you can give an estimation for these 

values and a reference to the source. You gave upper values in your note, but the factors 

depend on the difference in µn and µp which is uncertain. We can use your estimation of the 

maximal (n/p)^(A-1)  values as a source of systematics of Rcoal. 

   

To get estimation of Rcoal we assumed 4/3 π R_coal^3 = πR_s^2*2R_l, i.e. make 

transformation from a cylinder with radius R_t and 0.5 length of R_l to a sphere with R_coal 

of the same Volume. We can use Rcoal = (Vhom)
1/3 

 as you propose, but in Fig.15 other 

experiments probably used different transformation from Vhom  -> Rcoal 

 

Comment: 

As for the neutron-to-proton ratio, I have already suggested to use the UrQMD estimates, as 

it was already done to calculate the proton phase-space density according to paper Eq. (10). 

 

As for the coalescence volume, its relation to the Gaussian femtoscopic radii is rather 

arbitrary and has no real physical meaning. In fact, it is a question of agreement, which 

quantity to be considered as a volume and Vhom is one of them. As for the other experimental 

points in Fig. 15, they can simply be divided by the factor 1.145 = (3/2)
1/3

. 

 

 

l.461:  

One may recover the values Cd (Ct) = 0.55-0.61 (0.48-0.53), using (3’) and Rinv
 
= 2.5-2.8 fm, 

giving Cd (Ct) = 0.55-0.61 (0.52-0.58).  

Could you specify how the factors Cd and Ct have been “scaled according to the mass of the 

colliding system”?  

It looks like (see a paragraph above “Comments, questions and suggestions”) that the volume 

A -scaling is too strong and that the surface A
2/3 

scaling of R
3
 is more appropriate. 

 

Answer:  



Cd and Ct values are taken from table 3 of [48]: Cd = 0.55 for S+S and 0.61 for S+Pb. Using 

scaling by A1+A2, we got Cd =0.55 for Ar+C , Cd=0.61 for Ar+Pb and intermediate values 

for  Ar+Al, Cu, Sn. 

To get Ct values for Ar+A from Cd values we scaled them by the ratio Ct/Cd for Pb+Pb from 

table 3 of [48], i.e 0.7/0.8. 

If you can provide more precise predictions for the Cd and Ct values, we would use them. 

But in the paper, we need a reference to the source/method. 

 

Comment: 

It is not clear what is scaled by A1+A2. A linear scaling of Cd with A1+A2 looks 

oversimplified. To see this, consider for simplicity pt  0 and all the radii equal to a 

universal radius R  Rinv, i.e., 

                               CA  [1+ (dA/R)
2
]

3(A-1)/2
. 

Assuming a reasonable, linear in A1+A2, scaling of the volume R
3
, there is generally no 

A1+A2 scaling of CA. For deuterons, a linear scaling of CA takes place in the unrealistic case 

of (dA/R)
2
 only. In a more realistic opposite limit of (dA/R)

2
 ≪ 1, 

                          CA  1+ (dA/R)
2
 (3(A-1)/2), 

so that CA - 1 would scale as (dA/R)
2
 ~ 1/(A1+A2)

2/3
. 

 

Instead, a linear in (A1+A2) volume scaling could be used and the factors CA calculated from 

Eq. (3’) with the help of the rescaled radii. 

 

In fact, in [48], the Cd factors for S+S and S+Pb were obtained from Eq. (4.12) of [21] (which 

coincides with Eq. (3’) at pt  0) rescaling the LCMS femtoscopic nucleon radii at pt  0 

for Pb+Pb (Rs=Ro=5.1 fm, Rl=3.2 fm) based on the measured pion radii from [kai97].  

 

From the reported values [48], Cd(S+S) = 0.55 and Cd(S+Pb) = 0.61, one can deduce the 

scaling factors R(S+S)/R(Pb+Pb) = 0.59 and R(S+Pb)/R(Pb+Pb) = 0.66 and the 

corresponding rescaled radii and CA factors (calculated according to Eq. (3’)):  

 

                                Pb+Pb      S+Pb      S+S     

Rs=Ro, Rl [fm]       5.1, 3.2   3.4, 2.1    3.0, 1.9    

     Cd, Ct                          .79, .77   .61, .58    .55, .51    

 

The Cd and Ct factors are of similar size due to smaller r.m.s. triton radius, which almost 

compensates the additional power.  

Note that the CA factors for Pb+Pb agree with those obtained in [21] and that the 

underestimated Ct value of 0.7 was used in [48] (calculated in [21] with different fireball 

parameters compared to those giving the Cd factor of 0.8).  

 

Assuming a linear in (A1+A2) volume scaling, Vhom ~ (A1+A1), for heavy ion symmetric 

(Pb+Pb) collision, one finds a slight violation of the linearity for other collisions: Vhom(S+S) 

~ (A1+A1)
1.07

 and Vhom(S+Pb) ~ (A1+A1)
0.87

.  

 

Neglecting the violation of linear volume scaling, as well as, a decrease of the radii with 

decreasing collision energy, one can use the radii for S+S and S+Pb collisions to obtain the 

radii estimates interpolating between cubes of the S+S and S+Pb radii and calculate 

corresponding CA factors:  

 

                                  Ar+C      Ar+Al      Ar+Cu      Ar+Sn      Ar+Pb 



 Rs=Ro, Rl [fm]      3.0, 1.9    3.0, 1.9     3.1, 2.0     3.2, 2.0     3.4, 2.1 

     Cd,  Ct                         .55, .51    .55, .51     .57, .53     .58, .54     .61, .58 

 

 

General comment: 

Clearly, the determination of the coalescence (homogeneity) volume and the corresponding 

coalescence radius is affected by the uncertainties in the neutron-to-proton ratio n/p and - in 

the quantum correction factor CA, the latter related with the uncertainties in the LCMS 

femtoscopic nucleon radii and in the suppression A (due to a non-Gaussian tail of the 

nucleon emission function). A discussion (including estimates of upper limits) would be 

therefore appropriate. 

 

Answer:   

we can add systematic uncertainty in R_coal due to uncertainty of n/p and CA. 

If you provide sentences in the discussion part it would be nice. 

 

Comment on BA uncertainties due to A and n/p and corresponding uncertainties in Rcoal: 

 

- A = N
A: at our collision energy, one may expect [ada06, bog99] N

 ≳ 0.9, so that 

putting N = 1 would lead to Bd (Bt) underestimation ≲19% (27%); 

- n/p: for our collision systems, one may expect n/p essentially smaller than the 
intrinsic values, ranging from 1.11 to 1.37 from the lightest (C) to heaviest (Pb) target 

(actual values can be estimated from UrQMD simulations); e.g., assuming n/p = 1.2 

and putting n/p = 1 would lead to Bd (Bt) overestimation ≲ 20% (44%); 

- the overestimations (due to A ) and underestimations (due to n/p) of Rcoal = 
(Vhom)1/3 ~ BA

-(A-1)/3 compose ≲7% (11%) and ≲11% (22%), respectively. 
 

Comments, using Vadim’s Rnp estimates from UrQMD (1.09, 1.09, 1.11, 1.14 and 1.18 for 

Ar+C, Ar+Al, Ar+Cu, Ar+Sn and Ar+Pb): 

 

- their neglect leads to Bd (Bt) overestimation by                                                              
~ 9% (19%), 9% (19%), 11% (23%), 14% (30%) and 18% (39%), respectively;             
 the corresponding underestimations of Rcoal = (Vhom)1/3 ~ BA

-(A-1)/3 compose                
~3% (6%), 3% (6%), 3% (7%), 4% (8%) and 5% (11%) respectively; 

- as for the net effect of neglected differences of  A = N
A and Rnp  = n/p from unity, 

assuming N  0.9 and multiplying the corresponding enhancement and suppression 
factors, one arrives at net Bd (Bt) underestimations of                                                
~ 12% (13%), 12% (13%), 10% (10%), 8% (5%) and 4% (-1.5%), respectively;             
the corresponding overestimations of Rcoal = (Vhom)1/3 ~ BA

-(A-1)/3 compose                 
~  4% (10%), 4% (10%), 4% (7%), 3% (4%) and 1.5% (-1%), respectively. 

- the estimated net Bd (Bt) underestimations somewhat differ from Vadim’s numbers; 
his conclusion about the additional 10% uncertainty looks OK except for Sn and Pb 
targets, where the additional 5% uncertainty seems sufficient. 
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