# Update on photon and neutral pion spectra and flow

Oleg Golosov<sup>1,2</sup> Evgeniya Nekrasova<sup>1</sup> Dmitry Peresunko<sup>1</sup> Dmitry Blau<sup>1</sup>

<sup>1</sup>NRC "Kurchatov Institute" <sup>2</sup>NRNU MEPhI

MPD Cross-PWG meeting 27/11/2023

# Reminder

- Two possibilities for photon reconstruction:
  - Signal in EMC
  - e<sup>+</sup>e<sup>-</sup> pairs from TPC for converted photons
- Three methods for  $\pi^0$  reconstruction:
  - Calorimeter (both photons reconstructed with EMC)
  - Hybrid (EMC + converted photon)
  - Conversion (two converted photons)

Conversion method gives significantly higher momentum resolution but much lower reconstruction efficiency.



#### Analysis details

- UrQMD, Bi+Bi @ 9.2 GeV (request 25)
- Analysis procedure implemented in MpdConvPi0 class
- Output from EP, PID and V0Maker wagons is used
- Results are shown for the analysis train request #3

#### Changes since the previous report

- Flow of inclusive photons
- Use of EMC cluster core energy to reduce effects of cluster overlap
- Prevented the use of one track in several V0s
- Updated cluster and V0 selection criteria using both conventional and MVA approaches aimed to improve photon and  $\pi^0$  reconstruction efficiency. Five configurations tested:
  - Loose
  - Default
  - Tight
  - BDT (Boosted Decision Tree) selection for V0
  - BDT + momentum correction for V0
- Other smaller changes

#### Spectra of neutral pions

#### Comparison of different selection criteria



#### Cut dependence summary



- Tight/loose cut does not change pion peak parameters.
- Tight cut strongly (factor 1.5-2) increases S/Bg ratio, as expected
- Loose cuts increase calo/hybrid/conv efficiency by 16%/21%/27% at 1 GeV respectively
- BDT cuts increases efficiency at low-p<sub>T</sub> by factor > 10, but introduce correlated background (see further)

### **Problems found**

#### Hybrid, loose



Conversion, BDT

Strongly correlated background in Real at low m appears in BDT case. Requirement to not share tracks between V0 did not help. Investigating selection criteria

Strange kink in Real/Mixed ratio in pi0 mass region. Makes pi0 extraction hard, investigating the reason



#### Gamma cuts



Histogram for cluster cut efficiency is has too many bins ant is not properly filled. The error could not be reproduced.

# Flow of inclusive photons and neutral pions

## Notations at flow plots

- Primary photon photon produced in the vicinity of the primary vertex (DCA<sub>vtx</sub><1cm)</li>
- **MCprim** primary photons
- **Calo TrueVtx** clusters with the main contribution from a primary photon
- **Conv TrueVtx** track pairs descending from a primary photon
- **Calo True** clusters with the main contribution from a photon
- **Conv True** track pairs descending from a photon

#### Directed flow of photons



MCprim - primary photons Calo TrueVtx - clusters with the main contribution from a primary photon

**Conv TrueVtx** - track pairs descending from a primary photon

**Calo True** - clusters with the main contribution from a photon

**Conv True** - track pairs descending from a photon

Results are similar for different sets of conventional (upper row) and MVA (lower row) selection

### Directed flow of photons



- Calorimeter method is consistent with generator values
- BDT selection of V0 produces a hump at the intermediate  $p_T$  with conversion method irregular efficiency?

### Directed flow of photons



- Calorimeter method is consistent with generator values
- BDT selection of V0 gives lower  $v_1$  with conversion method

## Elliptic flow of photons



- Both calorimeter and conversion methods agree with the values for true photon detector signals (only at lower p<sub>T</sub> for conversion)
- Hump at intermediate  $p_{T}$  with BDT selection (like for  $v_{1}$ )

Elliptic flow of photons



- Both calorimeter and conversion methods agree with the values for true photon detector signals (only at midrapidity for conversion)
- Flow of photons registered with ECAL differs from the flow of primary photons - efficiency corrections could probably help
  15

# Reconstruction of $\pi^0$ flow

Fit  $v_n$  dependence on the invariant mass of photon pair with the following function below.  $v_{sig}$  and  $v_{bg}$  are free parameters,  $n_{sig}$  and  $n_{bg}$  are obtained from the fits of pair distributions.



$$v_{all}(M_{inv}) = rac{n_{sig}(M_{inv})v_{sig} + n_{bg}(M_{inv})(v_{bg}^{const} + v_{bg}^{lin} * M_{inv})}{n_{sig}(M_{inv}) + n_{bg}(M_{inv})}$$
 16

#### Directed flow of $\pi^0$



- Calorimeter method had a bug in train #3 and is not shown for  $\pi^0$
- Good agreement with MC for the hybrid method
- Not high enough statistics for both methods even with BDT selection

#### Directed flow of $\pi^0$



- Good agreement with MC for the hybrid method except for the low  $p_{\tau}$
- Not high enough statistics for both methods even with BDT selection

Elliptic flow of  $\pi^0$ 



- Good agreement with MC for the hybrid method (true pairs)
- Not high enough statistics for both methods even with BDT selection

### Elliptic flow of $\pi^0$



- Reasonable agreement with MC for the hybrid method (true pairs)
- Not high enough statistics for both methods even with BDT selection

# Summary

- EMC analysis is developing with the help of analysis trains
- For the calorimeter method  $\pi^0$  spectra and flow measurements seem to be viable with 20M selected collisions of Bi+Bi @9.2 GeV.
- Hybrid and conversion methods will likely require higher statistics.

#### Nearest plans

- Investigate the effect of cluster and V0 selection on photon and neutral meson reconstruction efficiency and improve the procedure
- Look for the sources inconsistencies with MC curves for the photon flow (limit the MC particles to EMC acceptance, introduce efficiency corrections)

#### Backup

#### Peak width & signal/background (default cuts)



#### Calo, tight cut, Real to mixed ratio



#### Cluster cut efficiency histogram magic

Train #3

Manual

