

Nuclotron-based Ion Collider fAcility

Физика столкновений тяжелых ионов

В. Рябов

Heavy-ion collisions

- ✤ QCD is a fundamental theory of strong interactions
- ♦ Only colorless particles observed in the experiment (no free quarks or gluons) \rightarrow confinement
- ✤ QGP is a state of matter in which quarks and gluons are free to move in space >> size of the nucleon
- ✤ QGP matter formation:

Two recipes: (a) at high T - Early universe

(b) at high baryon density - Neutron stars

Relativistic heavy ion collisions - A combination of the two recipes

LQCD calculations

✤ The QGP is predicted by numerical calculations of QCD on the lattice

Recent LQCD calculations show that the critical temperature is: T_c (at $\mu_B = 0$) = 156.5 ± 1.5 MeV

 Accompanied by chiral symmetry restoration → constituent quark mass ~ 300 MeV turns into current quark mass ~ 5-10 MeV

Heavy-ion collisions

В.Г. Рябов @ Научная сессия секции ядерной физики ОФН РАН

Heavy-ion collisions

- Study QCD under extreme conditions of temperature and density
- Explore the QCD phase diagram, search for the QGP and study its properties

Why Quark-gluon plasma is of interest?

- primordial form of QCD matter at high temperatures and/or (net)baryon densities
- / present during the first microseconds after Big Bang and in cores of the compact neutron stars / mergers
- ✓ provides important insights on the origin of mass for matter, and how quarks are confined into hadrons

High beam energies ($\sqrt{s_{NN}} > 100 \text{ GeV}$)

High temperature: Early Universe evolution

Low beam energies ($\sqrt{s_{NN}} \sim 10 \text{ GeV}$)

High baryon density: Inner structure of compact stars

System evolution in heavy-ion collisions

Fireball is ~10⁻¹⁵ meters across and lives for 5x10⁻²³ seconds

- Only final state particles are measured in the detector: γ , e^{\pm} , μ^{\pm} , π^{0} , π^{\pm} , K^{0} , K^{\pm} , η , ω , p, \bar{p} , ϕ , Λ , Σ , Ξ , etc.
- The measurements are used to infer properties of the early state of relativistic heavy-ion collisions by comparing measurement results with model (post)predictions

Collective flow

Anisotropic flow at RHIC/LHC

• Initial eccentricity and its fluctuations drive momentum anisotropy v_n with specific viscous modulation

Evidence for a dense perfect liquid found at RHIC/LHC (M. Roirdan et al., Scientific American, 2006)

Small system scan at RHIC

• v_2 and v_3 measurements in p-Au, d-Au and ³He-Au @ 200 GeV by PHENIX

• Measurements demonstrate that the v_n 's are correlated to the initial geometry

Hydrodynamic models, which include the formation of short-lived QGP droplets, provide a simultaneous description of these measurements

В.Г. Рябов @ Научная сессия секции ядерной физики ОФН РАН

Beam energy dependence

- ✤ At lower energies, flow is highly sensitive to fireball expansion and interactions with spectators
 - ✓ RHIC @ 200 GeV $(2R/\gamma) \sim 0.1 \text{ fm/c}$
 - ✓ AGS @ 3-4.5 GeV (2R/γ) ~ 9-5 fm/c
- Sensitivity to EOS, v_1 and v_2 show strong centrality, energy and species dependence
- Flow probes dominant degrees of freedom (hadronic vs. partonic)

NICA: <u>system size scan</u> for flow measurements to better understand the medium transport properties and onset of the phase transition → <u>unique capability at NICA</u>

relativistic fluid

Global polarization of particles

Non-central heavy-ion collisions

Focus is to see the effect of large angular momentum and magnetic field in heavy-ion collisions

Global hyperon polarization

★ Large angular momentum and strong magnetic field formed in mid-central heavy-ion collisions → polarization of particles in the final state

♦ $\Lambda/\overline{\Lambda}$ are "self-analyzing" probes → preferential emission of proton in spin direction

Phys.Rev.Lett.94:102301,2005; Erratum-ibid.Lett.96:039901,2006

The global polarization observable is defined by $\underline{34}$: $P_{\Lambda} = \frac{8}{\pi \alpha_{\Lambda}} \frac{\langle \sin(\Psi_{\rm EP} - \phi_{\rm p}^*) \rangle}{R_{\rm EP}}.$ (1) Here $\alpha_{\Lambda} = 0.732 \pm 0.014$ [35] is the Λ decay parameter, $\Psi_{\rm EP}$ the event plane angle, $\phi_{\rm p}^*$ the azimuthal angle of the

proton in the Λ rest frame, $R_{\rm EP}$ the resolution of the event plane angle and the brackets $\langle . \rangle$ denote the average

Global hyperon polarization

♦ Global hyperon polarization measurements in mid-central A+A collisions at $\sqrt{s_{NN}}$ = 3-5000 GeV

STAR, Phys.Rev.C, 104(6):L061901, 2021

- ↔ Global polarization of hyperons experimentally observed, decreases with $\sqrt{s_{NN}}$
- Hint for a Λ - $\overline{\Lambda}$ difference, magnetic field, $P_{\Lambda} \simeq \frac{1}{2} \frac{\omega}{T} + \frac{\mu_{\Lambda}B}{T}$, $P_{\overline{\Lambda}} \simeq \frac{1}{2} \frac{\omega}{T} \frac{\mu_{\Lambda}B}{T}$?
- Energy dependence of global polarization is reproduced by AMPT, 3FD, UrQMD+vHLLE
- ♦ AMPT with partonic transport strongly underestimates measurements at $\sqrt{s_{NN}} = 3 \text{ GeV} \rightarrow \text{hadron gas}$?

NICA: contribute <u>extra points in the energy range 2-11 GeV</u> with small uncertainties; centrality, p_T and rapidity dependence of polarization not only for Λ , but other (anti)hyperons (Λ , Σ , Ξ)

Polarization of vector mesons: $K^{\ast}(892)$ and ϕ

- ↔ Light quarks can be polarized by $|\bar{J}|$ and $|\bar{B}|$
- If vector mesons are produced via recombination their spin may align
- Quantization axis:
 - normal to the production plane (momentum of the vector meson and the beam axis)
 - normal to the event plane (impact parameter and beam axis)

$$\rho_{00}(\text{PP}) - \frac{1}{3} = [\rho_{00}(\text{EP}) - \frac{1}{3}] [\frac{1+3\nu_2}{4}]$$

✤ Measured as anisotropies:

$$\frac{dN}{d\cos\theta} = N_0 \left[1 - \rho_{0,0} + \cos^2\theta \left(3\rho_{0,0} - 1 \right) \right]$$

 $\rho_{0,0}$ is a probability for vector meson to be in spin state = 0 $\rightarrow \rho_{0,0} = 1/3$ corresponds to no spin alignment

★ Measurements at RHIC/LHC challenge theoretical understanding $\rightarrow \rho_{00}$ can depend on multiple physics mechanisms (vorticity, magnetic field, hadronization scenarios, lifetimes and masses of the particles)

NICA: <u>extend measurements</u> in the NICA energy range, $\sqrt{s_{NN}} < 11$ GeV

Strangeness production

Strangeness production: pp, p-A, A-A

- Since the mid 80s, strangeness enhancement is considered as a signature of the QGP formation
- Experimentally observed in heavy-ion collisions at AGS, SPS, RHIC and LHC energies

- Smooth evolution vs. multiplicity in pp, p-A and A-A collisions at LHC energies
- Strangeness enhancement increases with strangeness content and particle multiplicity
- STAR @ RHIC measurements in pp, A-A are in agreement with ALICE @ LHC at similar $\langle dN_{ch}/d\eta \rangle$
- Stronger relative enhancement at lower collision energies

Origin of enhancement

- ✤ No consensus on the dominant strangeness enhancement mechanisms:
 - ✓ strangeness enhancement in QGP contradicts with the observed collision energy dependence
 - \checkmark strangeness suppression in pp within canonical suppression models reproduces most of results except for $\phi(1020)$

- System size scan for (multi)strange baryon and meson production in p+p, p+A and A+A collisions is a key to understanding of strangeness production:
 - \checkmark excitation function of hadrons (yields, spectra, and ratios)
 - ✓ probe early stage and phase transformations in QCD medium, nuclear matter EOS and chemical equilibration

System size scan is <u>unique capability</u> of NICA in the energy range

Light (hyper)nuclei

- Production mechanism usually described with two classes of phenomenological models :
 - ✓ statistical hadronization (SHM) → production during phase transition, $dN/dy \propto exp(-m/T_{chem})$
 - ✓ coalescence → (anti)nucleons close in phase space ($\Delta p < p_0$) and matching the spin state form a nucleus
- Hypernuclei measurement studies are crucial:
 - ✓ microscopic production mechanism, Y-N (Y-Y, Y-N-N) potentials, strange sector of nuclear EoS
 - \checkmark strong implications for astronuclear physics \rightarrow hyperons expected to exist in the inner core of neutron stars
- Models predict enhanced hypernuclei production at NICA \rightarrow double hypernuclei are reachable

Yields, lifetimes and binding energies are needed at NICA energies to provide tighter constrains

Hadronic resonances

Hadronic phase

- ♦ <u>A phase between chemical and kinetic freeze out</u> \rightarrow lifetime and conditions?
- Short-lived resonances are sensitive to rescattering and regeneration in the hadronic phase

	ρ(770)	K*(892)	Σ(1385)	Λ(1520)	Ξ(1530)	(1020)
cτ (fm/c)	1.3	4.2	5.5	12.7	21.7	46.2
σ _{rescatt}	$\sigma_{\pi}\sigma_{\pi}$	$\sigma_{\pi}\sigma_{K}$	$\sigma_{\pi}\sigma_{\Lambda}$	$\sigma_K \sigma_p$	$\sigma_{\pi}\sigma_{\Xi}$	$\sigma_K \sigma_K$

- * Reconstructed resonance yields in heavy ion collisions are defined by:
 - \checkmark resonance yields at chemical freeze-out
 - ✓ hadronic processes between chemical and kinetic freeze-outs:

rescattering: daughter particles undergo elastic scattering or pseudo-elastic scattering through a different resonance \rightarrow parent particle is not reconstructed \rightarrow loss of signal

regeneration: pseudo-elastic scattering of decay products ($\pi K \rightarrow K^{*0}$, $KK \rightarrow \phi$ etc.) \rightarrow increased yields

* Resonances provide the means to directly probe the hadronic phase properties

Experimental results

✤ Properties of the hadronic phase are studied by measuring ratios of resonance yields to yields of longlived particles with same/similar quark contents: ρ/π , K*/K, ϕ/K , Λ*/Λ, Σ*±/Σ and Ξ*0/Ξ

- ✓ suppressed production of short-lived resonances ($\tau < 20 \text{ fm/}c$) in central A+A collisions → rescattering takes over the regeneration
- ✓ no modification for longer-lived resonances, ϕ -meson ($\tau \sim 40 \text{ fm/}c$)
- \checkmark yield modifications depend on event multiplicity, not on collision system/energy
- ★ Measurements in a wide energy range $\sqrt{s_{NN}}$ = 7-5000 GeV support the existence of a <u>hadronic phase that</u> <u>lives long enough (up to $\tau \sim 10 \text{ fm/}c$)</u> to cause a significant reduction of the reconstructed yields of shortlived resonances
- ✤ All model predictions must be filtered through the hadronic phase

Precise measurements at NICA are needed to validate description of the hadronic phase in models

Electromagnetic radiation

Direct photons and system temperature

- Direct photons are all photons except for those coming from hadron decays:
 - \checkmark produced during all stages of the collision
 - \checkmark QGP is transparent for photons \rightarrow penetrating probe
- Low-E photons \rightarrow effective temperature of the system:

$$E_\gamma rac{{\mathsf d}^3 N_\gamma}{{\mathsf d}^3 p_\gamma} \propto e^{-E_\gamma/{T_{
m eff}}}$$

• Relativistic A+A collisions \rightarrow the highest temperature created in laboratory ~ 10^{12} K

Direct photons puzzle(s)

- Simultaneous description of direct photon yields and elliptic flow (v_2) is problematic:
 - ✓ direct photon flow is similar to flow of decay photons, underestimated by hydro \rightarrow favors late emission
 - / large yields of low-E direct photon yields require early emission in to be described by hydro models

Controversial results reported for different systems by different experiments

Expectations for NICA

- Experimental measurements in A+A collisions are available from the LHC (2.76-5 TeV), RHIC (62-200 GeV) and WA98 (17.2 GeV)
- No measurements at NICA energies (direct photon yields and flow vs. p_T and centrality)

Estimation of the direct photon yields @NICA

Non-zero direct photon yields are predicted, $R\gamma \sim 1.05 - 1.15 \rightarrow$ experimentally reachable by MPD!!!

Potentially, NICA can provide <u>unique measurements</u> for direct photons in the NICA energy range

Dielectron continuum and LVMs

- The QCD matter produced in A-A interactions is transparent for leptons, once produced they leave the interaction region largely unaffected + not sensitive to collective expansion
- Dielectron continuum at low and intermediate mass/p_T carries a wealth of information about reaction dynamics and medium properties:
 - \checkmark low-mass part sensitive to late (hadronic) stage, intermediate mass to hot stage
 - ✓ ρ-meson peak: modification of ρ-meson properties in hot matter (chiral phase transition)
 - \checkmark charm production and correlations etc.

i	Dilepton channels	
1	Dalitz decay of π^0 :	$\pi^0 \to \gamma e^+ e^-$
2	Dalitz decay of η :	$\eta ightarrow \gamma l^+ l^-$
3	Dalitz decay of ω :	$\omega \to \pi^0 l^+ l^-$
4	Dalitz decay of Δ :	$\Delta \rightarrow N l^+ l^-$
5	Direct decay of ω :	$\omega \to l^+ l^-$
6	Direct decay of ρ :	$\rho \to l^+ l^-$
7	Direct decay of ϕ :	$\phi \rightarrow l^+ l^-$
8	Direct decay of J/Ψ :	$J/\Psi ightarrow l^+ l^-$
9	Direct decay of Ψ' :	$\Psi' \to l^+ l^-$
10	Dalitz decay of η' :	$\eta' ightarrow \gamma l^+ l^-$
11	pn bremsstrahlung:	$pn \rightarrow pnl^+l^-$
12	$\pi^{\pm}N$ bremsstrahlung:	$\pi^{\pm}N \to \pi N l^+ l^-$

Experimental measurements

- ✤ A-A systems at all energies studied show:
 - \checkmark LMR: clear enhancement of dileptons wrt to known hadronic sources \rightarrow HG thermal radiation, broadening of ρ spectral shape
 - ✓ IMR: no clear picture, uncertainties for charm production
- Dilepton excess is consistently reproduced by microscopic many body model (Rapp et al.)

Prospects (I)

□ Onset of deconfinement? Onset of CSR? Energy scan of dilepton excess:

- Integrated yield in the LMR tracks the fireball lifetime
- Inverse slope of the mass spectrum in the IMR provides a measurement of <T>, no blue shift
- First order phase transition, "anomalous" variations in the fireball lifetime related to critical phenomena.?
- Thermal radiation down to $\sqrt{s_{NN}} 6 \text{ GeV}$?

- \Box v₂ of thermal radiation
 - Very challenging measurement
 - v_2 as a function of p_T in different invariant mass regions probes the properties of the medium at different stages, from QGP to hadron-gas, provide an independent confirmation about the origin of the thermal radiation

NICA \rightarrow extensive program of dielectron measurements at $\sqrt{s_{NN}}$ = 2-11 GeV

Conclusions

- Heavy-ion collisions provide the means to study QCD phase diagram at extreme temperatures and (net)baryon densities.
- ✤ A wide variety of different observables needs to be measured to characterize properties of the medium produced in heavy-ion collisions. Interpretation of experimental results requires close cooperation between experimentalists and theoreticians. Currently experiment drives development of HI physics
- Heavy-ion collisions are studied for over 30 years now, however, there is still a lot to be understood
- ♦ NICA is a megascience project in Russia, which is largely devoted to study of heavyion collisions → properties of QCD matter at moderate temperatures and maximum (net)baryon densities
- NICA is in final state of production, has capabilities for important/unique contributions

BACKUP

NICA Project

- ✤ The first megascience project in Russia, which is approaching its full commissioning:
 - \checkmark already running in the fixed-target mode BM@N
 - \checkmark start of operation in collider mode in 2025 MPD and later SPD
- Expected beam configuration in Stage-I:
 - ✓ Xe+Xe, Bi+Bi at $\sqrt{s_{NN}}$ = 4-11 GeV
 - ✓ heavy-ion beam luminosity up to $\sim 10^{27}$ → collision rate ~ 5 kHz

STAR BES-I and BES-II Data Sets

Au+Au Collisions at RHIC											
Collider Runs					Fixed-Target Runs						
2	√ <mark>S_{NN}</mark> (GeV)	#Events	μ_B	Ybeam	run		√ <mark>S_{NN}</mark> (GeV)	#Events	μ_B	Ybeam	run
1	200	380 M	25 MeV	5.3	Run-10, 19	1	13.7 (100)	50 M	280 MeV	-2.69	Run-21
2	62.4	46 M	75 MeV	2	Run-10	2	11.5 (70)	50 M	320 MeV	-2.51	Run-21
3	54.4	1200 M	85 MeV		Run-17	3	9.2 (44.5)	50 M	370 MeV	-2.28	Run-21
4	39	86 M	112 MeV		Run-10	4	7.7 (31.2)	260 M	420 MeV	-2.1	Run-18, 19, 20
5	27	585 M	156 MeV	3.36	Run-11, 18	5	7.2 (26.5)	470 M	440 MeV	-2.02	Run-18, 20
6	19.6	595 M	206 MeV	3.1	Run-11, 19	6	6.2 (19.5)	120 M	490 MeV	1.87	Run-20
7	17.3	256 M	230 MeV		Run-21	7	5.2 (13.5)	100 M	540 MeV	-1.68	Run-20
8	14.6	340 M	262 MeV		Run-14, 19	8	4.5 (9.8)	110 M	590 MeV	-1.52	Run-20
9	11.5	157 M	316 MeV	e N	Run-10, 20	9	3.9 (7.3)	120 M	633 MeV	-1.37	Run-20
10	9.2	160 M	372 MeV	2	Run-10, 20	10	3.5 (5.75)	120 M	670 MeV	-1.2	Run-20
11	7.7	104 M	420 MeV	×.	Run-21	11	3.2 (4.59)	200 M	699 MeV	-1.13	Run-19
						12	3.0 (3.85)	2000 M	750 MeV	-1.05	Run-18, 21

Precision data to map the QCD phase diagram $3 < \sqrt{s_{NN}} < 200 \text{ GeV}; 750 < \mu_B < 25 \text{ MeV}$

Angular momentum and magnetic field

System Angular		System	Vorticity (s ⁻¹)	
	momentum	Solar sub-surface	10-7	
$(h/2\pi)$		Terrestrial atmosphere	10-5	
Electron in $\sqrt{l(l+1)}$		Great red spot of Jupiter	10-4	
nyurogen atom		Tornado core	10-1	
¹³² Ce (highest	70	Heated soap bubbles	100	
ior nucleij		Turbulent flow in superfluid He	150	
Heavy-ion $10^4 - 10^5$ collisions		Heavy-ion collisions STAR: Nature 548 (2017) 62	10 ^{7 ·} 10 ²¹	

System	Magnetic Field in Tesla
Human brain	10-12
Earth's magnetic field	10-5
Refrigerator magnet	10-3
Loudspeaker magnet	1
Strongest field in lab	10 ³
Neutron star	10 ⁶
Heavy-ion collisions	10 ¹⁵ - 10 ¹⁶

By orders of magnitude exceeds anything existing in the modern Universe

Polarization of Ξ and Ω

	Mass (GeV/c²)	cτ (cm)	decay mode	decay parameter	magnetic moment (μ _N)	spin
∧ (uds)	1.115683	7.89	Λ->πp (63.9%)	0.732±0.014	-0.613	1/2
∃⁻ (dss)	1.32171	4.91	Ξ⁻->Λπ⁻ (99.887%)	-0.401±0.010	-0.6507	1/2
Ω- (sss)	1.67245	2.46	Ω⁻->ΛК⁻ (67.8%)	0.0157±0.002	-2.02	3/2

Phys. Rev. Lett. 126, 162301 (2021)

- Λ, Ξ and Ω have different spins and magnetic moments, different number of s-quarks, less feedback for heavier hyperons
- Direct measurements are difficult due to small values of α
- Measured based on polarization of daughter Λ
- AMPT is consistent with measurements
- Polarization of Ξ is larger compared with Λ : $\langle P_{\Lambda+\bar{\Lambda}}\rangle(\%) = 0.24 \pm 0.03 \pm 0.03$ $\langle P_{\Xi}\rangle = 0.47 \pm 0.10 \text{ (stat.)} \pm 0.23 \text{ (syst.)}\%$
- Λ results are not feed-back corrected (~ 15%)
- The AMPT is consistent with measurements
- Polarization of Ξ is larger compared with Λ
- Earlier freeze-out of multi-strange baryons is consistent with larger value of P_H for Ξ
- Large uncertainties for Ω , can expect larger signal, $P = \frac{\langle \bar{s} \rangle}{s} \sim \frac{s+1}{3} \frac{\bar{\omega}}{T}$ PRC95.054902 (2017)

Feed-down effect

□ ~60% of measured Λ are feed-down from $\Sigma^* \rightarrow \Lambda \pi$, $\Sigma^0 \rightarrow \Lambda \gamma$, $\Xi \rightarrow \Lambda \pi$

 Polarization of parent particle R is transferred to its daughter Λ (Polarization transfer could be negative!)

 $C_{\Lambda R}$: coefficient of spin transfer from parent R to Λ S_R : parent particle's spin

$$\mathbf{S}^*_{\Lambda} = C \mathbf{S}^*_R \qquad \langle S_y \rangle \propto \frac{S(S+1)}{3} (\omega + \frac{\mu}{S} B)$$

 $f_{\Lambda R}$: fraction of Λ originating from parent R μ_R : magnetic moment of particle R

$$\begin{pmatrix} \varpi_{c} \\ B_{c}/T \end{pmatrix} = \begin{bmatrix} \frac{2}{3} \sum_{R} \left(f_{\Lambda R} C_{\Lambda R} - \frac{1}{3} f_{\Sigma^{0} R} C_{\Sigma^{0} R} \right) S_{R}(S_{R} + 1) & \frac{2}{3} \sum_{R} \left(f_{\Lambda R} C_{\Lambda R} - \frac{1}{3} f_{\Sigma^{0} R} C_{\Sigma^{0} R} \right) (S_{R} + 1) \mu_{R} \\ \frac{2}{3} \sum_{R} \left(f_{\overline{\Lambda R}} C_{\overline{\Lambda R}} - \frac{1}{3} f_{\overline{\Sigma}^{0} \overline{R}} C_{\overline{\Sigma}^{0} \overline{R}} \right) S_{\overline{R}}(S_{\overline{R}} + 1) & \frac{2}{3} \sum_{R} \left(f_{\overline{\Lambda R}} C_{\overline{\Lambda R}} - \frac{1}{3} f_{\overline{\Sigma}^{0} \overline{R}} C_{\overline{\Sigma}^{0} \overline{R}} \right) (S_{\overline{R}} + 1) \mu_{\overline{R}} \end{bmatrix}^{-1} \begin{pmatrix} P_{\Lambda}^{\text{meas}} \\ P_{\Lambda}^{\text{meas}} \end{pmatrix}^{-1} \begin{pmatrix} P_{\Lambda}^{\text{meas}}$$

Becattini, Karpenko, Lisa, Upsal, and Voloshin, PRC95.054902 (2017)

Decay	С
Parity conserving: $1/2^+ \rightarrow 1/2^+ 0^-$	-1/3
Parity conserving: $1/2^- \rightarrow 1/2^+ 0^-$	1
Parity conserving: $3/2^+ \rightarrow 1/2^+ 0^-$	1/3
Parity-conserving: $3/2^- \rightarrow 1/2^+ 0^-$	-1/5
$\Xi^0 ightarrow \Lambda + \pi^0$	+0.900
$\Xi^- \rightarrow \Lambda + \pi^-$	+0.927
$\Sigma^0 ightarrow \Lambda + \gamma$	-1/3

Primary \land polarization will be diluted by 15%-20% (model-dependent)

This also suggests that the polarization of daughter particles can be used to measure their parent polarization! e.g. Ξ , Ω

T. Niida, NA61/SHINE Open Seminar 2021

Ξ and Ω polarization measurements

$$\frac{dN}{d\Omega^*} = \frac{1}{4\pi} \left(1 + \alpha_H \mathbf{P}_H^* \cdot \hat{\mathbf{p}}_B^* \right)$$

Getting difficult due to smaller decay parameter for Ξ and Ω ... $\alpha_{\Lambda} = 0.732, \ \alpha_{\Xi^-} = -0.401, \ \alpha_{\Omega^-} = 0.0157$

spin 1/2

Polarization of daughter Λ in a weak decay of Ξ : (based on Lee-Yang formula)

T.D. Lee and C.N. Yang, Phys. Rev.108.1645 (1957)

$$\mathbf{P}_{\Lambda}^{*} = \frac{(\alpha_{\Xi} + \mathbf{P}_{\Xi}^{*} \cdot \hat{p}_{\Lambda}^{*})\hat{p}_{\Lambda}^{*} + \beta_{\Xi}\mathbf{P}_{\Xi}^{*} \times \hat{p}_{\Lambda}^{*} + \gamma_{\Xi}\hat{p}_{\Lambda}^{*} \times (\mathbf{P}_{\Xi}^{*} \times \hat{p}_{\Lambda}^{*})}{1 + \alpha_{\Xi}\mathbf{P}_{\Xi}^{*} \cdot \hat{p}_{\Lambda}^{*}}$$
$$\alpha^{2} + \beta^{2} + \gamma^{2} = 1$$
$$\mathbf{P}_{\Lambda}^{*} = C_{\Xi^{-}\Lambda}\mathbf{P}_{\Xi}^{*} = \frac{1}{3}\left(1 + 2\gamma_{\Xi}\right)\mathbf{P}_{\Xi}^{*}.$$
$$C_{\Xi^{-}\Lambda} = +0.944$$

spin 3/2

Similarly, daughter Λ polarization from Ω :

$$\mathbf{P}_{\Lambda}^* = C_{\Omega^- \Lambda} \mathbf{P}_{\Omega}^* = \frac{1}{5} \left(1 + 4\gamma_{\Omega} \right) \mathbf{P}_{\Omega}^*.$$

Here γ_{Ω} is unknown.

- Time-reversal violation parameter β_{Ω} would be small

- a_{Ω} is very small

then $\gamma_{\Omega} \sim \pm 1$ and the polarization transfer $C_{\Omega\Lambda}$ leads to:

 $C_{\Omega\Lambda} \approx +1 \text{ or } -0.6$

Parent particle polarization can be studied by measuring daughter particle polarization!

T. Niida, NA61/SHINE Open Seminar 2021

NICA Polarization of vector mesons: $K^*(892)$ and ϕ

Non-central heavy-ion collisions:

 $\rho_{0,0}$ is a probability for vector meson to be in spin state = $0 \rightarrow \rho_{0,0} = 1/3$ corresponds to no spin alignment

- ★ Measurements at RHIC/LHC challenge theoretical understanding $\rightarrow \rho_{00}$ can depend on multiple physics mechanisms (vorticity, magnetic field, hadronization scenarios, lifetimes and masses of the particles ...)
- Measurements should be extended to lower collision energies

Critical fluctuations

- ♣ Ratio of the 4th-to2nd moment of the (net)proton multiplicity distribution:
 - ✓ non-monotonic behavior → deviation from non-critical dynamic baseline close to CEP ???

Interpretation of results requires understanding of the role of finite-size effects, which have specific dependence on the size and duration of formed system

Significant <u>improvement of statistical precision and systematic</u> uncertainties and <u>extra points</u> in the NICA energy range are required

Hypermatter: intro

- Nuclear matter EOS is of importance for QCD, nuclear physics and astrophysics
- Only NN potential are very well determined from scattering experiments
- Hyperons appear in the core of neutron stars (NS) at approx. twice the normal nuclear density
- In a new chemical composition, due to attractive YN potentials, the EOS becomes softer
- New balance among the (inward) gravitational force and (outward) thermal + Fermi degenerate pressure impacts the mass-radius (M-R) relation for NSs

M. Orsaria et al, Phys. Rev. C 89, 015806 (2014)

28.06.2022

A. Zinchenko

Hypermatter in stellar objects: hyperon puzzle

Proper description of the underlying hyperon-nucleon (YN) and hyperon-hyperon (YY) interactions in dense QCD medium is needed \rightarrow hypernuclei offer the possibility.

28.06.2022

A. Zinchenko

4

NICA High-energy heavy-ion reaction data

- ✤ Galactic Cosmic Rays composed of nuclei (protons, ... up to Fe) and E/A up to 50 GeV
- ✤ These high-energy particles create cascades of hundreds of secondary, etc. particles

- ✤ Cosmic rays are a serious concern to astronauts, electronics, and spacecraft.
- The damage is proportional to Z^2 , contribution of secondaries p, d, t, ³He, and ⁴He is also significant
- ✤ Need input information for transport codes for shielding applications (Geant-4, Fluka, PHITS, etc.):
 - \checkmark total, elastic/reaction cross section
 - ✓ particle multiplicities and coellecense parameters
 - ✓ outgoing particle distributions: $d^2N/dEd\Omega$

NICA High energy heavy ion reaction data

- ✤ NICA can deliver different ion beam species and energies:
 - ✓ Targets of interest (C = astronaut, Si = electronics, Al = spacecraft) + He, C, O, Si, Fe, etc.
- ✤ No data exist for projectile energies > 3 GeV/n

m² vs. momentum in TOF herefore mathematical structures of the structure of the struct

MPD has excellent light fragment identification capabilities in a wide rapidity range \rightarrow <u>unique</u> <u>capability of the MPD</u> in the NICA energy range

В.Г. Рябов @ Научная сессия секции ядерной физики ОФН РАН

m² (GeV² / c⁴)

Comparison to higher energies

• $R\gamma \sim 1.05$ -1.2 in heavy-ion collisions at SPS/RHIC/LHC, $\sqrt{s_{NN}} = 17.2$ -2760 GeV

• $R\gamma \sim 1.05$ is on the verge of experimental measurability (PHENIX in pp/pA@200, $\geq 2\sigma$)

Dilepton experiments

Electron identification

- Electrons are produced at low rates, $e/\pi \sim 10^{-3}$ - 10^{-4}
- ✤ Identification of electrons requires special treatment using capabilities of different detectors

- * Each of the detectors provides more efficient electron identification in a limited range of momenta
- * Combined use of the TPC-TOF-ECAL signals enhances the probability for a selected track to be true e^{\pm}

Electron efficiency and purity

- Simulated BiBi@9.2 GeV, realistic vertex distribution
- Selected tracks:
 - $\checkmark \text{ hits > 39} \\ \checkmark |\eta| < 1$

- ✓ 2σ matching to TOF
- ✓ 1-2σ TPC-eID

✓ $|DCA_x,y,z| \le 3 \sigma$

✓ 2σ TOF-eID

♦ Purity of ~ 100% at 40% reconstruction efficiency can be achieved at $p_T > 150$ MeV/c

- ✤ Yield and flow of e+e- pairs:
 - ✓ probe deconfinement and chiral symmetry restoration
 - \checkmark effective temperature

T. Galatyuk et al., Eur. Phys. J. A 52 (2016) 131; R. Rapp and H. v. Hess, PLB 753 (2016) 586 J.Cleymans et al. 2006 Phys. Rev. C73, 034905

NA60: H. Specht, AIP Conf. Proc. 1322 (2010) 160; HADES: Nature Physics 15 (2019) 1040