Recent result from ATLAS and CMS experiments A.Myagkov (IHEP)

LHC: status and plans

2

Run 3 6.8 TeV ATLAS, CMS target 250 /fb LHCb 25-30 /fb ALICE 200/pb pp, 7/nb Pb-Pb

Run 4 (HL_LHC) High pileup up to $\langle \mu \rangle = 140-200$, high particle multiplicity, plan $\sim 3/ab$

Total Integrated Luminosity in Run 3 (13.6 TeV p-p data only)

2024 LHC schedule

Activity	#days	%
25 ns physics (>1200 bunches)	124	53.7
Special physics runs (incl. setting-up)	2	0.9
Pb-Pb ions physics & p-p ref. run	22.5	9.7
Beam Commissioning & Intensity ramp-up	42	18.2
Scrubbing	3	1.3
Pb-Pb ions & p-p ref. setting-up	6	2.6
Technical stop	9	3.9
Technical stop recovery	2	0.9
Other scheduled stops	0.5	0.2
Machine Development (incl. floating MDs)	20	8.7
Total:	231	100%

Closure of LHC and experimental caverns on March 6th 2024

A.Myagkov NRC KI - IHE_P

ATLAS and CMS

Ratio of diboson EWK cross-section measurements to theory

Multiboson measurements (diboson and triboson)

- allow new precise tests of SM
- are very sensitive to anomalous couplings (BSM search)
- backgrounds to more rare processes, such as processes involving Higgs boson(s)

Large number of processes study Generally good agreement between experiment and theory Constraint on anomalous couplings

Multi-Boson Production

Multiboson measurements (diboson and triboson)

- allow new precise tests of SM

- are very sensitive to anomalous couplings (BSM search)

- are main backgrounds to more rare processes, such as processes involving Higgs boson(s)

S-channel V₁ TGC

Large number of processes study Generally good agreement between experiment and theory Constraint on anomalous couplings

TGC,QGC

Larger cross sections:

- More precise measurement for SM test
- Possibly accurate differential cross section Multiboson couplings:
- T(Q)GC: WWZ, WWY, WWZY, WWYY
- BSM TGC: ZZY, ZYY
- BSM QGC : ZZ $\gamma\gamma$, ZZZ γ ,Z $\gamma\gamma\gamma$ BSM Higgs decay by Z \rightarrow vv

A.Myagkov

NRC KI - IHEP

8

Multi-Boson Production

EFT

Effective field theory (EFT)

Modern model independent approach to parameterize BSM effects (deviations from SM in the measurements) in the Lagrangian

- Figure Lagrangian is based on Taylor expansion in local operators with mass dimension >4: $\mathscr{L}_{SMEFT} = \mathscr{L}_{SM} + \sum \frac{c_i^{d=6}}{\Lambda^2} \mathcal{O}^{d=6} + \sum \frac{c_i^{d=8}}{\Lambda^4} \mathcal{O}^{d=8} + \dots$
- Operators O are gauge invariant combinations of SM fields; the odd ones violate B-L number
- ▶c_i are the Wilson coefficients, ∧ is the new physics scale
- Only c_i/Λ^{d-4} are measurable, they **can be constrained using data** \rightarrow possible **constraints on BSM models**

Observation of *Wγγ* Phys. Lett. B 848 (2024) 138400

- $W\gamma\gamma$ production in e/μ final states is observed first time with significance of 5.6 σ (observed and expected)
- The measured fiducial cross section for $W(ev)\gamma\gamma$
- and $W(\mu\nu)\gamma\gamma$ events is $\sigma(fid)$
- = 13.8 ± 1.1(stat) +2.1-2.0(syst) ± 0.1(lumi)\ fb
- in agreement with the SM predictions
- for this process

top mass combination ATLAS and CMS arXiv:2402.08713

- ► Key SM parameter: Higgs coupling, consistency fits
- Method: Best Linear Unbiased Estimated BLUE combination of 15 Run-1 measurements
- Datasets (assumed) statistically uncorrelated Challenge: how to correlate systematics between experiments? [ATLAS+CMS]
- Classify sources as strongly/partially/un correlate
- $(\rho = 0.85/0.5/0)$
- mt = 172.52 ± 0.14 (stat) ±0.30 (syst) GeV
- ▶ Total uncertainty $\pm 0.33 \text{ GeV} \rightarrow 0.2\%!$
- Most precise *m*t ever reported by experiments;
- ~same precision as PDG world average!

tttt Eur.Phys.J. C83 496(2023)

 $\sigma_{t\bar{t}t\bar{t}} = 22.5^{+4.7}_{-4.3} (\text{stat})^{+4.6}_{-3.4} (\text{syst}) \text{ fb} = 22.5^{+6.6}_{-5.5} \text{ fb}$ SM: $\sigma_{tttt} = 12.0 \pm 2.4 \text{fb}$ JHEP 02(2018) 031

re-analysis of the Run 2 140 fb–1 dataset at s=13TeV in the 2LSS/3L channels:

Rare Standard Model process Sensitive to the top-quark Yukawa coupling Can be significantly enhanced in many BSM models

GNN score in signal region

$t\overline{t}$ quantum entanglement

- New lab for observing quantum effects (with relativistic effects)
- > Pseudo-bare quark! \rightarrow entanglement expected in t⁻t near threshold
- Angle between charged leptons from top/antitop decay \rightarrow entanglement

CMS Focus on low-mass region (345 < mtt < 400 GeV

$D_{ m obs}$ = -0.478 ± 0.017 (stat) $^{+0.018}_{-0.021}$ (syst)

A.Myagkov NRC KI - IHEP

 $D_{\text{exp}} = -0.465^{+0.016}_{-0.017} \text{ (stat)} {}^{+0.019}_{-0.022} \text{ (syst)}$

Higgs boson

Monday 4 Jul 2022, CERN

2207.00043 A portrait of the Higgs boson by the CMS experiment ten years after the discovery **Nature volume 607, pages 60-68 (2022)**

2207.00092 A detailed map of Higgs boson interactions by the ATLAS experiment ten years after the discovery **Nature volume 607,pages 52-59 (2022)**

Reduced Higgs boson coupling strength modifiers and their uncertainties.

A.Myagkov NRC KI - IHEP

H->2nd Generation (H->ccbar)

CMS

- ► $\mu(VZ, Z \rightarrow cc) = 1.01 + 0.23 0.21$
- First observation of $Z \rightarrow cc$ at a hadron collider
- > \circ Observed (expected) significance of 5.7 (5.9) σ
- σ(VH) x BR(H→cc) < 14 (7.6+3.4-2.3) SM at 95% CL</p>
- 1.1 < |κ_c| < 5.5 (expected: |κ_c| < 3.4) at 95% CL
- ATLAS
- µ(VH→cc) = −9 ± 10 (stat.) ± 12 (syst.)
- ► $\circ \mu(VZ \rightarrow cc) = 1.16 \pm 0.32$ (stat.) ± 0.36 (syst.).
- Observed (expected) constraint of |κc| < 8.5 (12.4) at 95% CL
- Ratio κc/κb constrained to less than 4.5 at the 95% CL

Yukawa coupling proportional to fermion mass \rightarrow largest couplings to t-quark

CMS Run-I+Run-2: **5.2σ** (4.2σ exp.)

PRD 97 (2018) 072003, PRL 120 (2018) 231801, PRL 125 (2020) 061802

ATLAS 6.3 (5.1) sig Higgs boson decays into bb⁻, WW*, ττ, γγ, and ZZ* Phys. Lett. B 784 (2018) 173

NRC KI - IHEP A.Myagkov

18

Η

Higgs Boson Width

- Predicted width in SM ΓH: 4.07MeV
- > Direct measurements : measuring Higgs lifetime or on-shell width.
- mass resolution limited by detector resolution 1-2GeV.

Indirect measurement: measuring the signal strengths in on-shell and off-shell separately, and take their ratio: ZZ is the ideal channel

Off-shell Higgs in ZZ channel and Higgs Boson Width

- Difficulties for probing off-shell Higgs:
- low production rate: ~10% of total xs

Higgs Pair Production and Decay Modes

Higgs self interaction

$$V(H) = \frac{1}{2}m_H^2 H^2 + \lambda v H^3 + \frac{1}{4}\lambda H^4$$
$$\lambda = \frac{m_H^2}{2v^2} \quad \text{-0.13}$$

The coupling λ is difficult to measure, because the cross section for HH production, which provides sensitivity to this coupling, is very small ~λH4

HH Combination

Physics Letters B843(2023)137745

Combined upper-limit SM HH Cross-Section 2.4*Sig_SM (2.9 Exp.)

k

Combined limit based on previous

Combined upper limit on ggF+VBF production σ HH < 3.4 (2.5) σ HH(SM) based on previous result

NEW ATLAS results: HH ML (ATLAS-CONF-2024-005)

For the first time, ATLAS is analysing data in with a nolistic way considering all the H->WW,ZZ, $\tau\tau$ lepton decay modes, in addition with H-> $\gamma\gamma$. No b-jets are expected, except for the HH->bbZZ channel.

The result is interpreted in terms of limits on the signal strength. Combination yields an observed (expected) limit of 18 (11)

NEW CMS results: $X \rightarrow HH \rightarrow \gamma \gamma \tau \tau$ CMS-PAS-HIG-22-012

138 fb⁻¹ (13 TeV) [q]_{10⁵</sup>} 95% CL upper limits CMS Theory prediction Observed Preliminary SM prediction Median expected dd b 10⁴ 68% expected 95% expected 10³ 10² 10¹ -15 -10 10 15 -5 0 5 20 Kλ

Despite the very low branching ratio, this channel $\widehat{\mathbb{H}}_{\widehat{\mathbb{H}}}^{\underline{\mathbb{H}}}$ benefit from the very good di-photon mass resolution $\widehat{\mathbb{H}}_{\widehat{\mathbb{H}}}^{\uparrow}$ and the clean lepton decay from taus.

The result is interpreted in terms of limit on the Cross section, with an observed (expected) limit of 33 (26) times the SM.

Expected and observed upper limits on the nonresonant HH production cross section at the 95% $^{\kappa}$ CL, obtained for different values of $\kappa_{-\lambda}$. The green and yellow bands represent the one and two standard deviations for the expected limit, respectively. The theoretical prediction with the uncertainty of the cross section as a function of $\kappa_{-\lambda}$ is shown by the red band.

Problems in SM

- Dark Matter in the Universe
- Particle antiparticle asymmetry in the Universe, numbers!
- CP violation CKM phase too small efect
- Neutrino masses, mixing, oscillations
- Very small cosmological constant. Very weak gravity interaction
- Muon (g-2)µ anomaly (about 3.5 $\sigma \rightarrow 4.2 \sigma$ BNL)
- B-anomalies (about 4.5 σ)
- CDF W-mass anomaly (about 7 σ)

More Problems in SM

- What is a generation? Why there are only 3 generations?
- How quarks and leptons related to each other, what is a nature of quark-lepton analogy?
- What is responsible for gauge symmetries, why charges are quantize?
- Are there additional gauge symmetries?
- What is responsible for a formation of the Higgs potential?
- To which accuracy the CPT symmetry is exact?
- Why gravity is so weak comparing to other interactions?

Summary of ATLAS results (EXO+SUSY) from Run 2

Exploration at the high-energy frontier: ATLAS Run 2 searches investigating the exotic jungle beyond the Standard Model (2403.09292)

- 3 Compositeness 9
- 4 Additional vector bosons 12
- **5** Additional leptons 23
- 6 Vector-like lepton and quarks 28
- 7 Leptoquarks 39
- 8 Charged-lepton flavour violation 49
- > 9 Hidden sectors leading to long-lived neutral
- 10 Dark-matter candidates 57
- 11 Long-lived multi-charged or highly ionizing particles 75
- > 12 Extra dimensions, gravitons and quantum black holes 77

The quest to discover supersymmetry at the ATLAS experiment (2403.02455)

5 Strongly produced supersymmetric particles 10
6 Weakly produced supersymmetric particles 18
6.1 Slepton pair production 18
6.2 Electroweakino pair production 20
7 R-parity-violating decays 23
8 Long-lived supersymmetric particles 26
9 Beyond simplified models

A.Myagkov

NRC KI - IHEP

29

Searches for resonances decaying to pairs of heavy bosons

NRC KI - IHEP

Phys. Rev. D 105 (2022) 092002 JHEP 11 (2020) 163 JHEP 07 (2023) 040 JHEP 07 (2023) 040 JHEP 11 (2020) 163

X->HH -> bbbb X->HH -> bb τ + τ - X-> HH->bb $\gamma\gamma$

Combined likelihood with inputs from all three HH resonant analyses

- No significant excess wrt SM. Largest combined deviation of 3.3 (2.1) σ at 1.1 TeV
- The limits are interpreted in the Type-I Two-Higgs-Doublet Model and the Minimimal Supersymmetric Standard Model, and constrain parameter space not previously excluded by other searches

Searches for Dark Matter (DM)

Direct production of DM ATLAS, CMS

Indirect detection Detect ordinary matter resulting from decay/annihilation of dark matter (ICECUBE, HESS) ³²

Dark matter

candidates:

- stable (non-interacting directly, MET signatures) or with a
- lifetime high enough (LLP signatures)
- electrically neutral
- with a mass reachable at the LHC
- **DM signatures** (two substances DM particle and mediator):
- fully visible (mediator only, a new resonance
- in dijet/dilepton/diboson etc. spectra)
- MET decay to DM particle pair (+ a visible "tag")
- non-standard properties of SM particles
- (higgs sector higgs boson pair production, h125 to invisible...)

There are three complementary philosophies to search for DM at the LHC

- Effective Field Theory (EFT)-typically depends on two Degrees of Freedom (M_DM and M* -UV cut off scale) : Contact interactions
- Simplified (or simple) models-minimal number of DOF, typically 4 or more:

Higgs portal, dark photon, Z' boson, squarks

Complete models like SUSY, possibly with a smaller, phenomenologically motivated parameter set like the pMSSM, Little Higgs, Universal Extra Dimensions

Dark sector with Long-Lived Particles at the LHC

LLP:

a proper lifetime cτ0 is greater than or comparable to the characteristic size of the (sub)detectors

small cτ0 that comparable to the inner tracker size, no displaced tracks □ "standard" prompt decay intermediate cτ0 □ LLP very large/infinite large cτ0 □ stable particles, "standard" MET signatures

Searching for long-lived particles beyond the Standard Model at the Large Hadron Collider, arXiv:1903.04497

A.Myagkov NRC KI - IHEP

35

the lifetime reach of CMS long-lived particle analyses for a selected set of new physics phenomen

Overview of CMS long-lived particle searches

Selection of observed exclusion limits at 95% C.L. (theory uncertainties are not included). The y-axis tick labels indicate the studied long-lived particle.

A.Myagkov

NRC KI - IHEP

36

Search for resolved high-mass trijet resonances CMS-PAS-EXO-22-008

- ► Targeted both the 3-body decay $(X \rightarrow jjj)$ and cascade decay $(X \rightarrow Yj \rightarrow jjj)$ in [1.75, 9.0] TeV. Extended a previous CMS search [Phys. Lett. B 832 (2022) 137263]for the cascade decay
- Background estimated from parametric function fits to the data
- No significant excess. Limits could be easily reinterpreted with other models predicting such new heavy resonances

Anomaly detection search for new resonances decaying into a Higgs boson and a generic new particle X PHYS. REV. D 108, 052009 (2023)

- The anomaly detection in this search is performed with a
- jet-level anomaly score (SA). The SA value is given by
- a variational recurrent neural network (VRNN), which
- consists of a variational autoencoder (VAE) whose latent
- space is updated at each time step of a recurrent neuralnetwork (RNN).

The lowest observed p-value corresponds to the bin with $mY \in [3608, 3805]$ GeV and $mX \in [75.5, 95.5]$ GeV 1.4 σ global significance in BumpHunter

A.Myagkov NRC KI - IHEP

38

Van

HL-LHC 2021 2022 2023 2024 2025 2026 2027 2028 2029 JFMAMJJASONDJFMAMJ Long Shutdown 3 (LS3) Run 3 2030 2031 2032 2033 2034 2035 2036 2037 2038 JFMAMJJASONDJFMAMJ Run 4 Run 5 LS4 2040 2039 2041 JFMAMJJASONDJFMAMJJASONDJFMAMJJASOND Shutdown/Technical stop Protons physics Ions LS5 Run 6 Commissioning with beam Hardware commissioning Last update: April 2023

Run 2: 140/fb Run 3: ~450/fb HL-LHC: ~3000/fb (~20 x today's dataset)

Thank you for attention

$H \rightarrow \tau \tau$ CP structure arXiv:2212.05833

 φ_{CP}^{*} π^{-} π^{+} π^{+} π^{+} π^{+} π^{+} π^{+} π^{+} π^{+} π^{0} π^{-} π^{+} π^{0} π^{+} π^{+} π^{0} π^{+} π^{+} π^{0} π^{+} π^{+} π^{0} π^{+} π^{+} π^{0} π^{+}

$H \to \tau^+ \tau^- \to \pi^+ \pi^- + 2\nu \quad H \to \tau^+ \tau^- \to \pi^+ \pi^0 \nu \pi^- \pi^0 \nu \quad H \to \tau^+ \tau^- \to \pi^+ \pi^0 \nu \pi^- \nu$

41

Evidence for off-shell Higgs and Measured Width

Methods of W mass measurements

The transverse mass is

- less sensitive to the qT(W) spectrum
- much more sensitive to the hadronic recoil

But, due to pile-up, lepton pT is more promising at the

Experimental challenges

- control the lepton energy scale at < 0.1%
- pile up conditions

EW Vector Boson Scattering

Dark matter models

47

Prompt low mass di-muon with scouting

- Targeted signature: 2 muons with small primary vertex displacement
- Triggering on double muons (>3 GeV) with the scouting method
- 2017 + 2018 data (97 fb-1)
- Benchmark model: Hidden Abelian Higgs Model, 2HDM+s
- Baseline selections
- > 1 opposite sign muon pair
- *ppTT*>4GeV,ηη<1.9</p>
- |PV -BeamSpot| (L) < 0.2 cm</p>
- Pass two custom muon BDT IDs
- (mmμμμμ<4GeV: J/ψψmmμμμμ>4GeV: Upsilon)

Prompt low mass di-muon with scouting

- Bump-hunt on the di-muon mass spectra
- Limits are set for $m\mu\mu$ in [1.1, 2.6] and [4.2, 7.9] GeV
- Largest excess @ 2.41 GeV in the boosted category, low mass selection
- Local 3.2σ, global 1.3σ

CMS PAPER TOP-23-001

- Analysis strategy: use leptonic final states to measure the
- helicity angle $\cos \varphi \equiv \ell 1 \cdot \ell 2$ (measured in the top reference frame)
- The entanglement proxy D is extracted with a template fit
- All systematic effects included as nuisances

 $D_{\text{exp}} = -0.465^{+0.016}_{-0.017} \text{ (stat)} {}^{+0.019}_{-0.022} \text{ (syst)}$

- Interpretations
- Deviations from SM in high energy region can be expressed as anomalous triple/quartic gauge couplings
- and can be interpreted using different theoretical approaches.
- Effective field theory (EFT)
- Modern model independent approach to parameterize BSM effects (deviations from SM in
- the measurements) in the Lagrangian
- Effective Lagrangian is based on Taylor expansion in local operators with mass dimension >4:

CMS 1 chan!

- Exclusion limit on HH production cross section:
- Observed (expected): σ HH < 52 (97) σ HH(SM)
- Constraint on Higgs self coupling modifier:

```
Observed (expected): -25.8 (-14.4) < kλ < 24.1</p>
```


HVV anomalous coupling $H \rightarrow ZZ \rightarrow \ell \ell \ell \ell$ arXiv:2304.09612

- A neural-network trainning performed to enhance the VBF purity
- > \checkmark 4 VBF SRs defined with NN output
- Three types of fit perform
- ▶ \checkmark Production \rightarrow CR(ZZ, VBF-dep)+SR(VBF1-4)
- ▶ \checkmark Decay \rightarrow CR(ZZ)+SR(inclusive)
- ▶ \checkmark Combined \rightarrow CR(ZZ)+SR(VBF-dep, VBF1-4)

Measurement of the W Mass at the LHC 2403.15085

ATLAS 7 TeV mW = 80366.5 ± 9.8 (stat.) ± 12.5 (syst.) MeV = 80366.5 ±15.9 MeV,

H mass arXiv:2207.00320

One of the fundamental parameters of the standard model (SM)

Uncertainties : lepton and photon energy scales

ATLAS Legacy : combination of Run I and Run II measurements in $H\to\gamma\gamma$ and $H\to4l$

 $m_{\rm H} = 125.11 \pm 0.09_{\rm stat} \pm 0.06_{\rm syst} \, \text{GeV}$: precision $\mathcal{O}(0.09\%)$

PhysRevLett.131.251802

The combined measurements profit from the increased dataset, and from significantly improved calibrations of the electron and photon energy [16, 21] and of the muon momentum [17, 22].

darkHiggs(WW) + MET (CMS) PAS EXO-21-0

 $\chi\chi$ mass through dark Higgs (s) Yukawa coupling •two mediators: ZZ',ss

•free parameters: $mm_{ss}, mm_{\chi\chi}, mm_{ZZ'}, gg_{\chi\chi}, gg_{qq}$

Two final states are considered: $s \rightarrow WW \rightarrow lvlv$ (di-leptonic) $ss \rightarrow WW \rightarrow lvjj$ (semi-leptonic, resolved) Limits are set on dark matter production in the contex dark Higgs simplified model, with a dark Higgs mass ab W+W- mass threshold -

