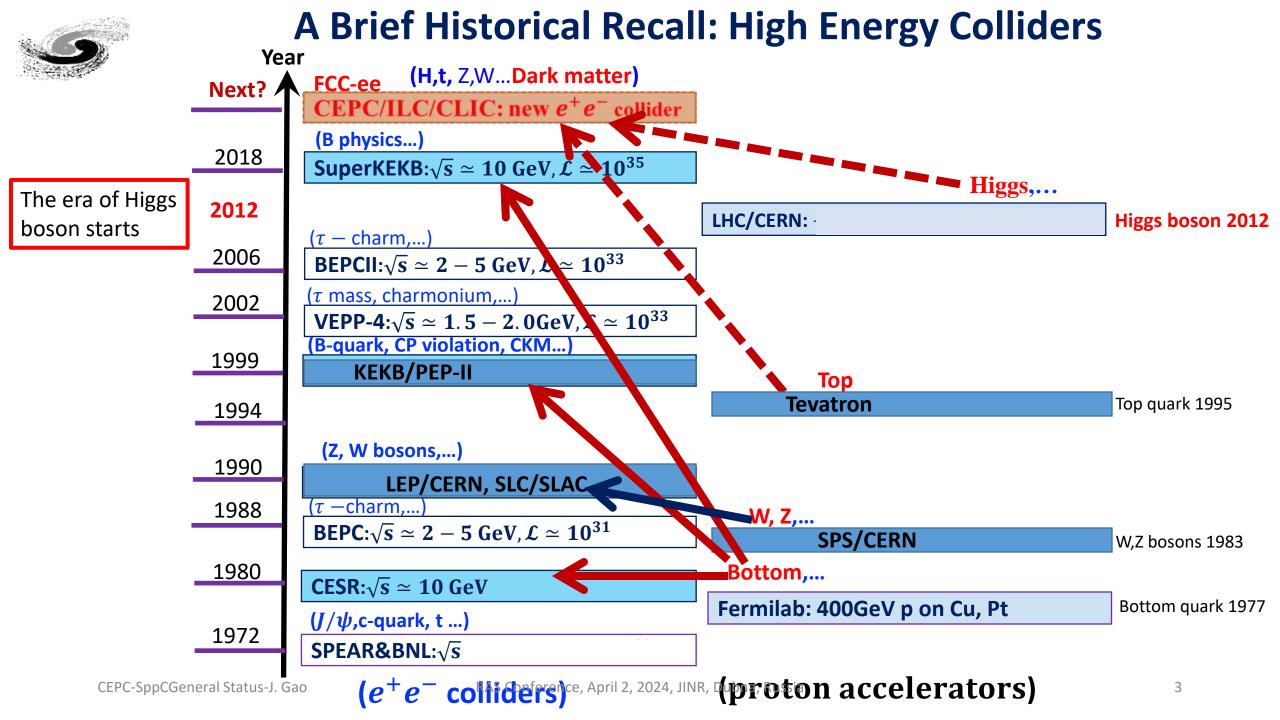


CEPC-SppC General Status

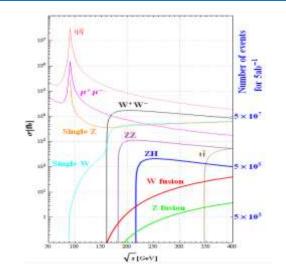
-Towards construction through EDR Phase

Jie Gao

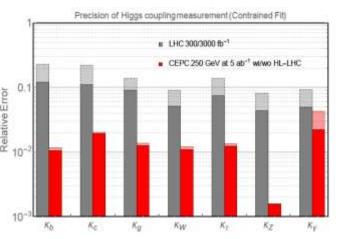

IHEP

Contents

- Introduction (General and physics goals)
- CEPC accelerator design and key technologies R&D in TDR
- SppC compatibility with CEPC
- CEPC site preparations in TDR
- CEPC accelerator TDR review (+cost), IAC meeting and TDR released
- CEPC Detector R&D status
- CEPC EDR goals, plans and development towards construction
- CEPC industrial preparation and international collaborations
- Summary



Physics Goals of CEPC-SppC

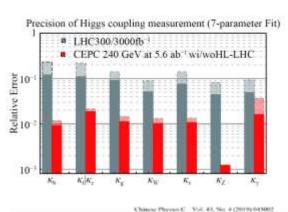

- Circular Electron-Positron Collider (CEPC) as a Higgs Factory (91, 160, 240, 360 GeV)
 - Higgs Factory (>10^6 Higgs) :
 - Precision study of Higgs(mH, JPC, couplings), complementary to Linear colliders
 - Looking for hints of new physics, Dark Matter...
 - Z & W factory (>10^10 Z0) :
 - · precision test of SM
 - · Rare decays?
 - Flavor factory: b, c, t and QCD studies
- Super proton-proton Collider(SppC) (~100 TeV)
 - Directly search for new physics beyond SM
 - Precision test of SM
 - e.g., h3 & h4 couplings

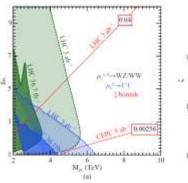
Precision measurement + Searches for new physics: complementary with each other (lepton and hadron colliders)

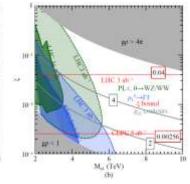
CEPC-SppC was proposed by Chinese scientists in Sept. 2012 after <u>Higgs Boson</u> was discovered on <u>July 4, 2012</u> at CERN

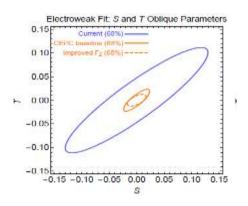
Cross sections for major SM physics processes at the electron positron collider

Anticipated accuracy on Higgs properties at CEPC and at LHC/HL-LHQ

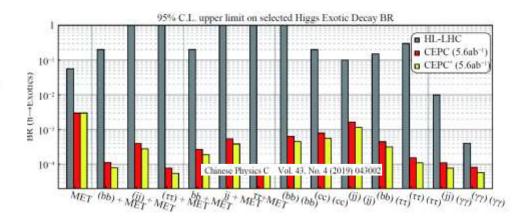


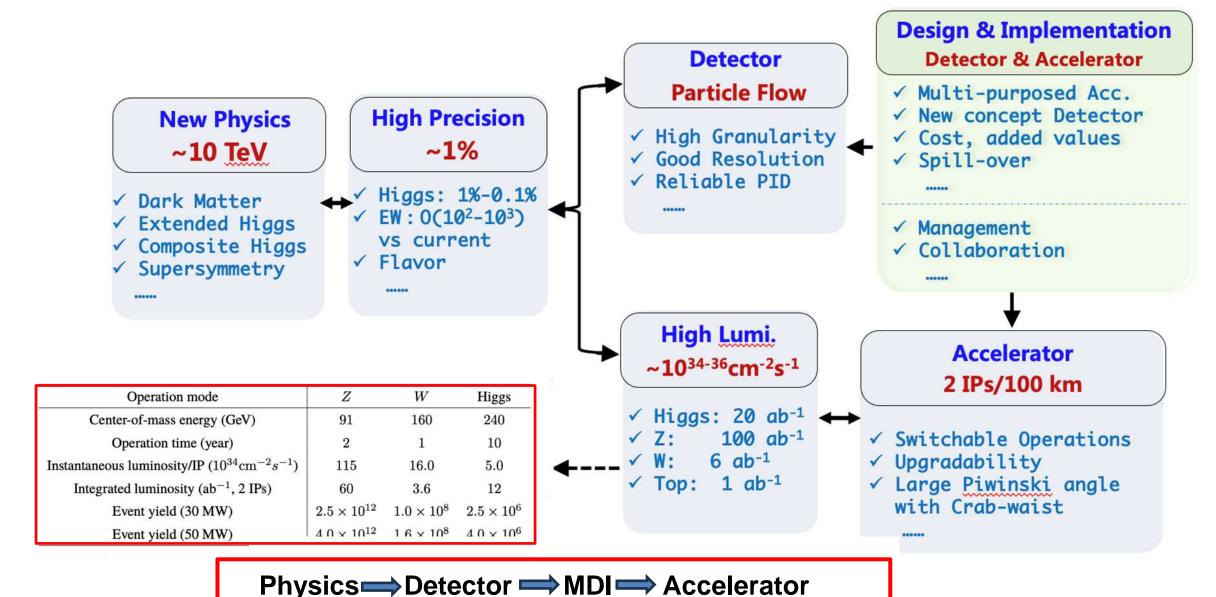

Scientific Objectives: "Discovery + Precision Measurement"


Higgs coupling measurement can be improved by orders magnititude


Direct and indirect probe to new physics up to 10 TeV, an order of magnitude higher than HL-LHC

Electroweak
measurement can be
improved by
a large factor




Precision Higgs physics at the CEPC

Physics white papers published and to be published

Key Scientific Issues and Technological Route

CEPC Operation Plan and Goals in TDR

Particle	E _{c.m.} (GeV)	Years	SR Power (MW)	Lumi. per IP (10 ³⁴ cm ⁻² s ⁻¹)	Integrated Lumi. per year (ab ⁻¹ , 2 IPs)	Total Integrated L (ab ⁻¹ , 2 IPs)	Total no. of events
H*	240	10	50	8.3	2.2	21.6	4.3×10^6
			30	5	1.3	13	2.6×10^{6}
Z	91	2	50	192**	50	100	4.1×10^{12}
	91	۷	30	115**	30	60	2.5×10^{12}
W	160	1	50	26.7	6.9	6.9	2.1×10^8
	160	1	30	16	4.2	4.2	1.3 × 10 ⁸
$t \bar{t}$	360	5	50	0.8	0.2	1.0	0.6×10^6
			30	0.5	0.13	0.65	0.4×10^6

^{*} Higgs is the top priority. The CEPC will commence its operation with a focus on Higgs.

^{**} Detector solenoid field is 2 Tesla during Z operation, 3Tesla for all other energies.

^{***} Calculated using 3,600 hours per year for data collection.

The Global HEP Consensus on Higgs Factories

The scientific importance and strategical value of an electron positron Higgs factory is clearly identified worldwide

2013, **2016**: Xiangshan Science Conferences concluded that the CEPC is the best approach and a major historical opportunity for the national development of accelerator-based high-energy physics program.

China

JAHEP Japan **2017**: Japan Association of High Energy Physicists (JAHEP) proposes to construct a 250 GeV center-of-mass ILC promptly as a Higgs factory.

2020: An electron-positron Higgs factory is the highest-priority next collider. For the longer term, the European particle physics community has the ambition to operate a proton-proton collider at the highest achievable energy. Accomplishing these compelling goals will require innovation and cutting-edge technology:

Europe

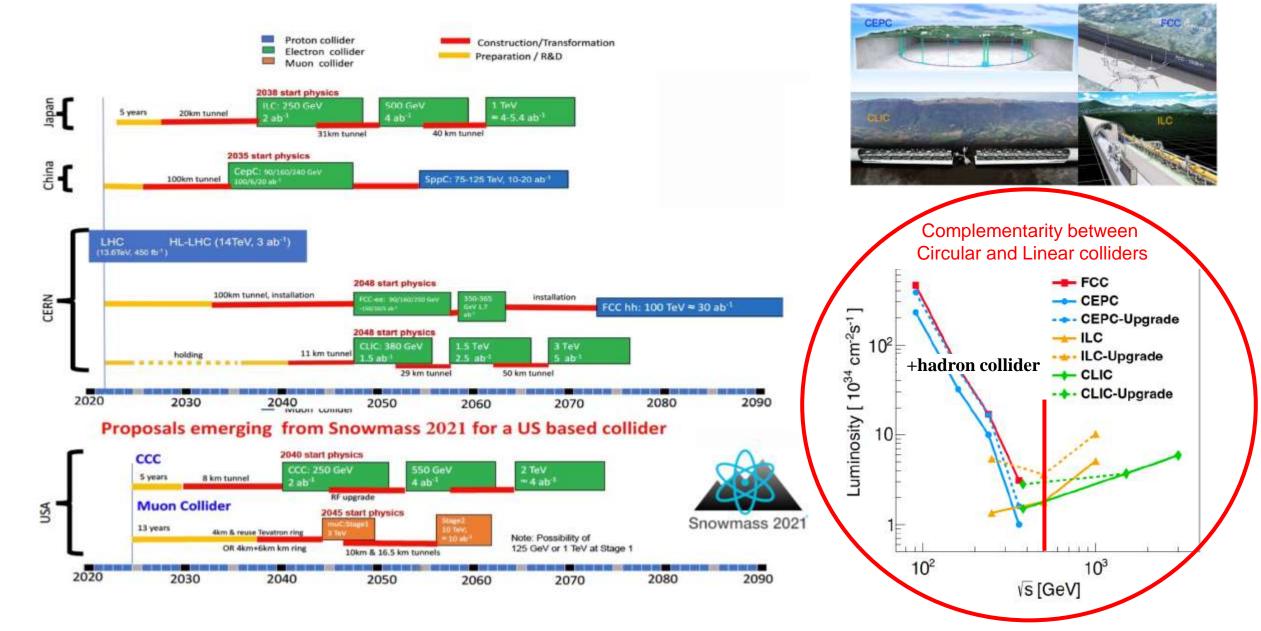
In April 2022, the International Committee for Future Accelerators (ICFA) "reconfirmed the international consensus on the importance of a Higgs factory as the highest priority for realizing the scientific goals of particle physics", and expressed support for the above-mentioned Higgs factory proposals

Pathways to Innovation and Discovery in Particle Physics

Report of the Particle Physics Project Prioritization Panel 2023

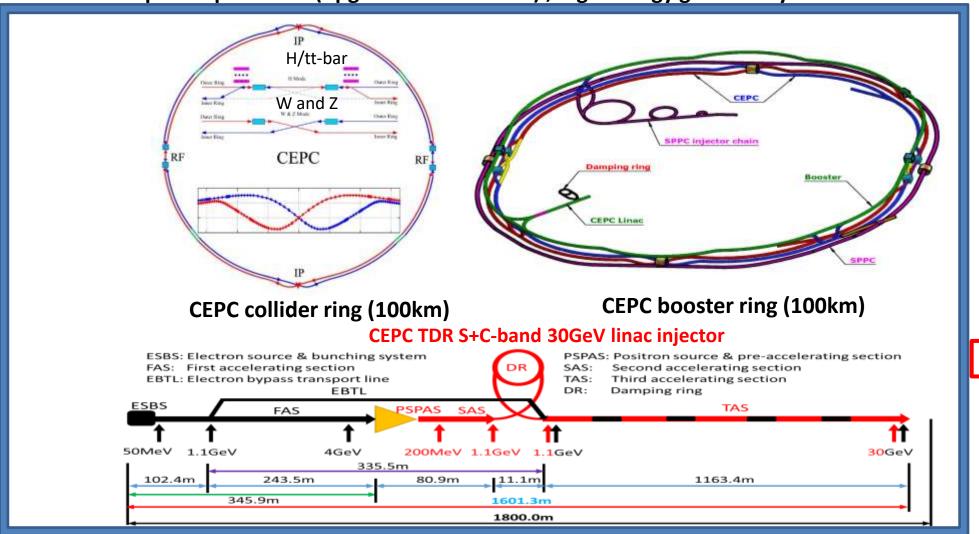
Recommendation 6

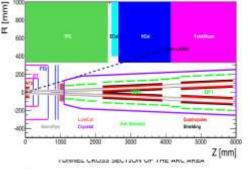
Convene a targeted panel with broad membership across particle physics later this decade that makes decisions on the US accelerator-based program at the time when major decisions concerning an off-shore Higgs factory are expected, and/or significant adjustments within the accelerator-based R&D portfolio are likely to be needed. A plan for the Fermilab accelerator complex consistent with the long-term vision in this report should also be reviewed.

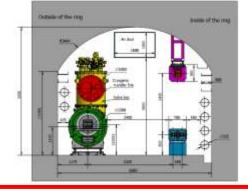

The panel would consider the following:

- The level and nature of US contribution in a specific Higgs factory including an evaluation
 of the associated schedule, budget, and risks once crucial information becomes available.
- 2.Mid- and large-scale test and demonstrator facilities in the accelerator and collider R&D portfolios.
- 3.A plan for the evolution of the Fermilab accelerator complex consistent with the longterm vision in this report, which may commence construction in the event of a more favorable budget situation.

P5 report, USA, 2023


Timelines in Snowmass Energy Frontier Summary

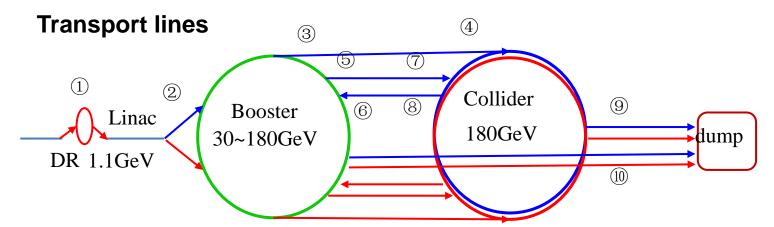




CEPC Higgs Factory and SppC Layout in TDR

CEPC as a Higgs Factory: H, W, Z, upgradable to ttbar, followed by a SppC (a Hadron collider) ~125TeV 30MW SR power per beam (upgradable to 50MW), high energy gamma ray 100Kev~100MeV

CEPC/SppC in the same tunnel


CEPC Accelerator System Parameters in TDR

Linac Booster Collider

Parameter	Symbol	Unit	Baseline
Energy	E_e / E_{e+}	GeV	30
Repetition rate	f_{rep}	Hz	100
Bunch number per pulse			1 or 2
Bunch charge		пС	1.5 (3)
Energy spread	σ_E		1.5×10 ⁻³
Emittance	\mathcal{E}_r	nm	6.5

		tt	H		$oldsymbol{W}$		Z	
		Off axis injection	Off axis injection			Off axis injection		
Circumfer.	km			-	100			
Injection energy GeV 30								
Extraction energy	GeV	180	120		80	45.5		
Bunch number		35	268	261+7	1297	3978	5967	
Maximum bunch charge	nC	0.99	0.7	20.3	0.73	0.8	0.81	
Beam current	mA	0.11	0.94	0.98	2.85	9.5	14.4	
SR power	MW	0.93	0.94	1.66	0.94	0.323	0.49	
Emittance	nm	2.83	1.2	26	0.56	0.19		
RF frequency	GHz				1.3			
RF voltage	GV	GV 9.7 2.17		0.87	0.46			
Full injection from empty	h	0.1	0.14	0.16	0.27	1.8	0.8	

	Higgs	Z	W	t̄t		
Number of IPs		2	2			
Circumference (km)		10	0.0			
SR power per beam (MW)	30					
Energy (GeV)	120	45.5	80	180		
Bunch number	268	11934	1297	35		
Emittance $\varepsilon_x/\varepsilon_y$ (nm/pm)	0.64/1.3	0.27/1.4	0.87/1.7	1.4/4.7		
Beam size at IP σ_x/σ_y (um/nm)	14/36	6/35	13/42	39/113		
Bunch length (natural/total) (mm)	2.3/4.1	2.5/8.7	2.5/4.9	2.2/2.9		
Beam-beam parameters ξ_x/ξ_y	0.015/0.11	0.004/0.127	0.012/0.113	0.071/0.1		
RF frequency (MHz)	650					
Luminosity per IP (10 ³⁴ cm ⁻² s ⁻¹)	5.0	115	16	0.5		

CEPC Technical Design Report (TDR) includes:

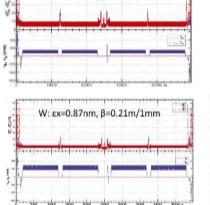
- 1) CEPC Accelerator TDR
- 2) CEPC Detector TDRrd (rd=reference design) will be released by June 2025

Machine Design for all Operation Modes

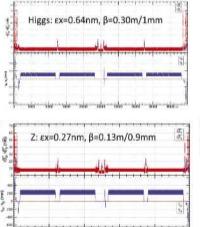
Goal

e+e- circular collider as a high lumi. Higgs factory

Compatible operation for Higgs, W, Z and Top

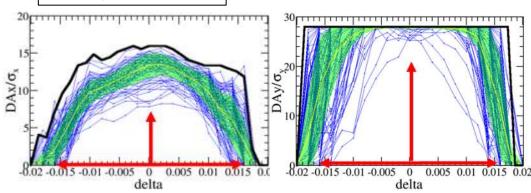

Increasing Luminosity

Design

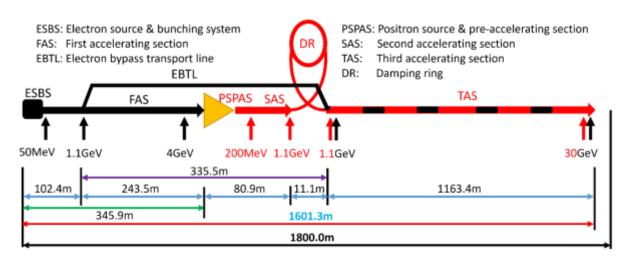

- Lattice optimization for all energies
- Sufficient DA for all energies
- Beam-beam & collective instability
- Crab waist scheme with large cross angle and sextuples

Beam-beam effect study bx*=0.3m, np=12e10*290bunches ⊢ Lum/IP [10³⁴ cm⁻²s⁻¹] 0.55 0.58 0.54 0.56 0.57 w/o ZT, w/ZL w/ ZT, w/ZL 1.2 0.54 0.55

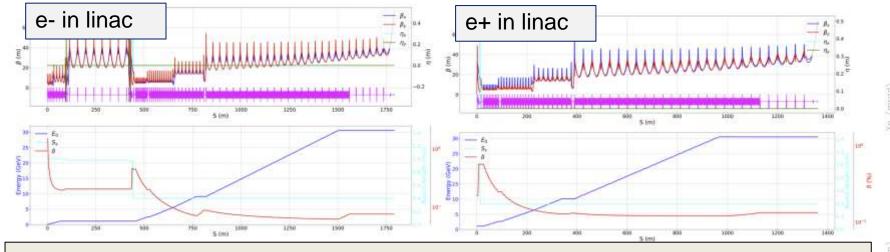
Lattice for all energies

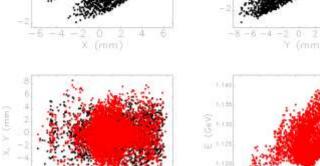


ttbar: ex=1.4nm, β=1.04m/2.7mm


Dynamic Aperture (DA) optimization

Requirement met Higgs (w/error): $7\sigma_x \times 16\sigma_y \times 1.6\%$

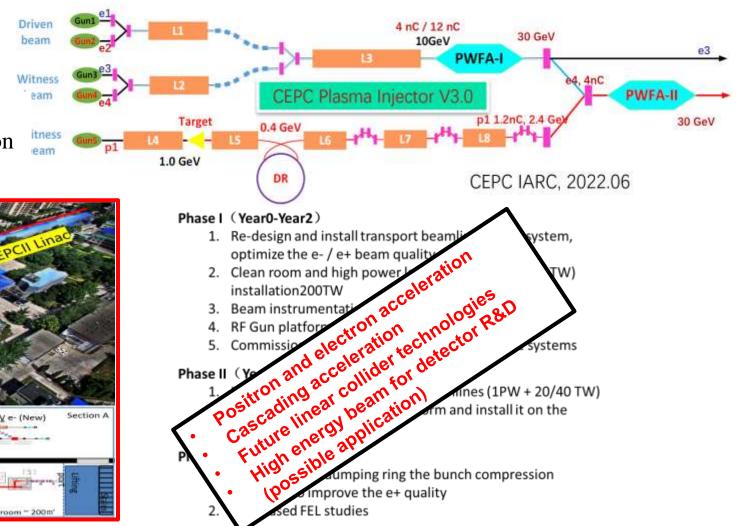



CEPC e- and e+ Injection Linac Designs in TDR

Parameter	Symbol	Unit	Design value
Energy	E	GeV	30
Repetition rate	f_{ren}	Hz	100
Number of bunches per pulse	1		1 or 2
Bunch charge		nC	1.5
Energy spread	$\sigma_{\!\scriptscriptstyle E}$		1.5×10 ⁻³
Emittance	\mathcal{E}_r	nm	6.5
Electron energy at target		GeV	4
Electron bunch charge at target		nC	10
Tunnel length	L	m	1800

Phase space @ SAS exit

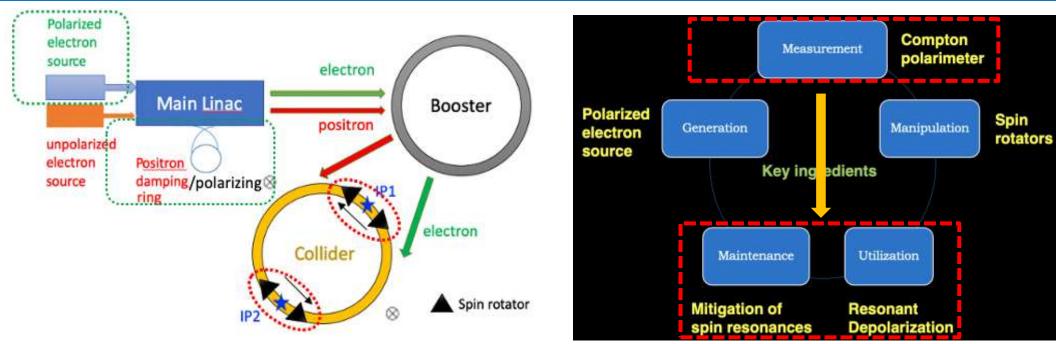
- Linac energy increases to 30 GeV, with S+C band Accelerator;
- Start-to-end simulations with errors have been conducted for both electron/positron beams, with qualities satisfying design requirements.



CEPC Plasma Injector (alternative option) and TF Plan

CEPC plasma injector scheme:

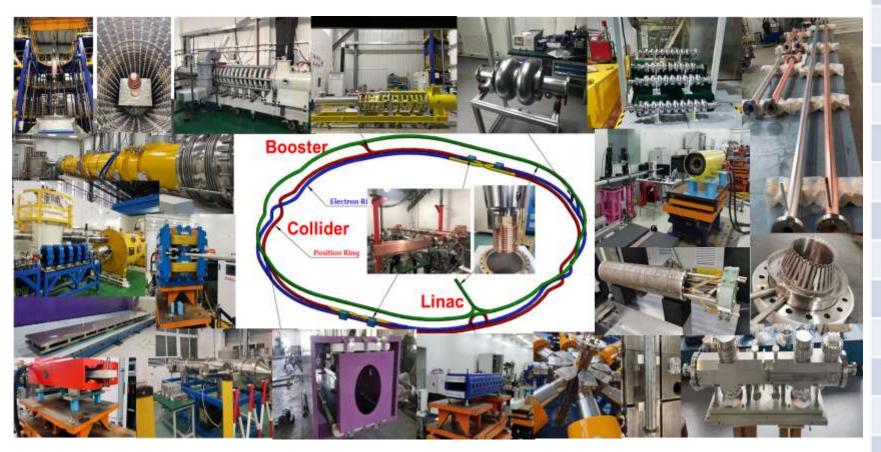
From 10 GeV \rightarrow 30 GeV \rightarrow TR \geq 2


Simulation results show that it works on paper with reasonable error tolerances for both electron and positron beams injected to the booster

CEPC Polarization Studies (alternative option)

Both the transverse and longitudinal polarization and Z, W, are feasible (Higgs under study)

- Implement the lattice design to accommodate polarized beams: spin rotator, wiggler, Compton polarimeters, dumping ring and booster design, etc.
- R&D of Compton polarimeter, polarized electron sources, spin rotator, etc.
- Simulate the process and effects of errors
- Carry out experiments at BEPCII & HEPS booster

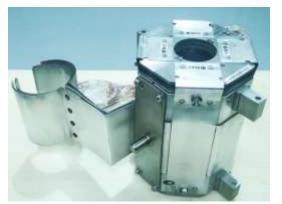

CEPC Key Technology R&D Status in TDR

Specification Met

Prototype Manufactured 💙

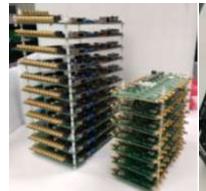
Key technology R&D in TDR spans all component lists in CEPC CDR

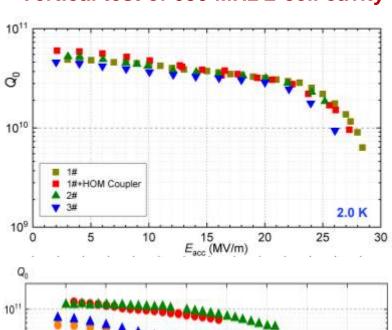
Accelerator	Fraction
✓ Magnets	27.3%
√ Vacuum	18.3%
RF power source	9.1%
✓ Mechanics	7.6%
✓ Magnet power supplies	7.0%
✓ SC RF	7.1%
✓ Cryogenics	6.5%
✓ Linac and sources	5.5%
Instrumentation	5.3%
Control	2.4%
Survey and alignment	2.4%
✓ Radiation protection	1.0%
SC magnets	0.4%
✓ Damping ring	0.2%

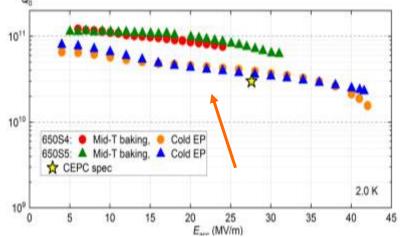

CEPC Booster 1.3 GHz 8 x 9-cell High Q Cryomodule

CEPC booster 1.3 GHz SRF R&D and industrialization in synergy with CW FEL projects.

Parameters	Horizontal test results	CEPC Booster Higgs Spec	LCLS-II, SHINE Spec	LCLS-II-HE Spec
Average usable CW $E_{\rm acc}$ (MV/m)	23.1	3.0×10 ¹⁰ @	2.7×10 ¹⁰ @	2.7×10 ¹⁰ @
Average Q_0 @ 21.8 MV/m	3.4×10 ¹⁰	21.8 MV/m	16 MV/m	20.8 MV/m




CEPC R&D: 650 MHz SRF Cavities for collider


- First three 2-cell cavities based mainly on BCP shows reasonable performance
- Recent 1-cell cavity based on cold-EP and Mid-temperature baking achieved the world best results, exceeding CEPC spec.
- Continue to develop multi-cell cavities

Vertical test of 650 MHz 2-cell cavity

Vertical test of 650 MHz 1-cell cavity

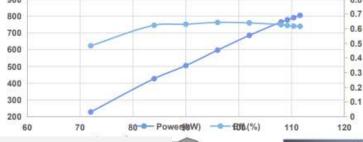
CEPC High Efficiency High Power Klystron Development and RF Power Distribution System

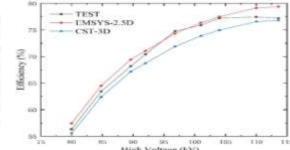
CEPC klystron R&D

Klystron No. 2 Efficiency 77% (2021)

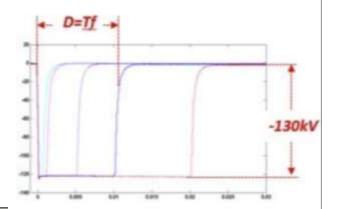
Klystron No. 3 (MB)

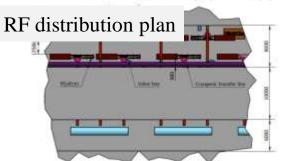
Klystron No. 3 (MBI Efficiency 80.5% (under fabrication)

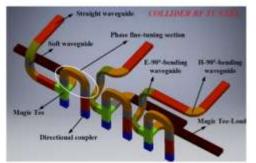

Power Supply Modulator



Klystron No. 1 Efficiency 65% (2020)


Pulsed RF Mode (30% duty factor, 60ms/5Hz) 77.2%@849kW pulsed in 2024


High Voltage vs. Power&Efficency



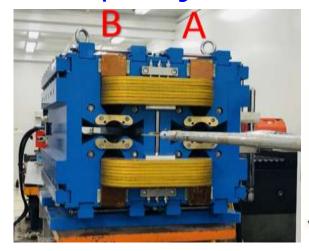
To be tested in 2024

- Three prototypes of the 650MHz 800KW CW klystrons are developed. The efficiency reaches 70%
- PSM is developed with the industrial collaboration
- RF tunnel distribution was planed

R&D: Other Prototypes

Collider dipole magnet

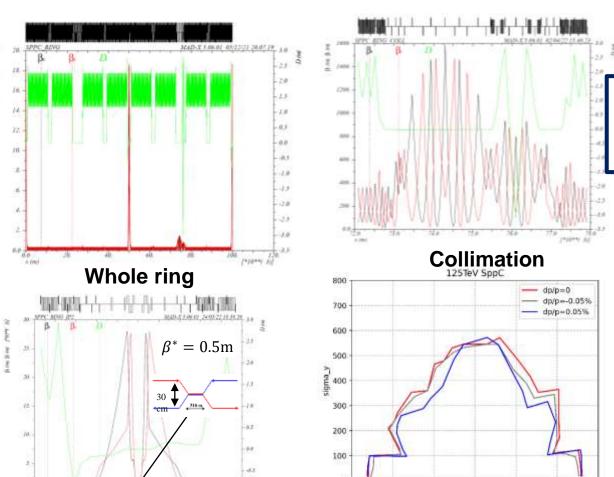
booster dipole magnet



EM deflector

Collider quad magnet

Lambertson magnets


SppC Collider Parameters in TDR

-Parameter list (updated Feb. 2022)

Main parameters

Main parameters		
Circumference	100	km
Beam energy	62.5	TeV
Lorentz gamma	66631	
Dipole field	20.00	T
Dipole curvature radius	10415.4	m
Arc filling factor	0.780	
Total dipole magnet length	65442.0	m
Arc length	83900	m
Total straight section length	16100	m
Energy gain factor in collider rings	19.53	
Injection energy	3.20	TeV
Number of IPs	2	
Revolution frequency	3.00	kHz
Revolution period	333.3	μs
Physics performance and beam param	eters	
Initial luminosity per IP	4.3E+34	${\rm cm}^{-2}{\rm s}^{-1}$
Beta function at initial collision	0.5	m
Circulating beam current	0.19	A
Nominal beam-beam tune shift limit per	0.015	
Bunch separation	25	ns
Bunch filling factor	0.756	
Number of bunches	10080	
Bunch population	4.0E+10	
Accumulated particles per beam	4.0E+14	

Lattice of SPPC

SppC is compatible with CEPC in the same tunnel

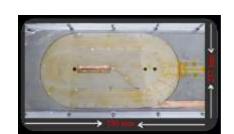
Ecm=125TeV with dipole field of 20T

Dynamic Aperture

sigma_x

400

IP



IBS Technology for High Field Magnets

Z. Zhao **IBS** (T_c 55K)

100-m 7-core IBS tape fabricated $J_{a} = 100 \text{ A/mm}^{2}$ @ 10 T, 4.2 K

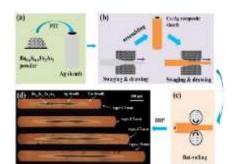
IBS solenoid at 32 T Racetrack at 10 T 1.3 kA transposed cable $J_e > 450 \text{ A/mm}^2$

R&D under way

@ 10 T, 4.2 K

Discovery of IBS

2008.04


H. Hosono

IBS (T_c 26K)

2008.09

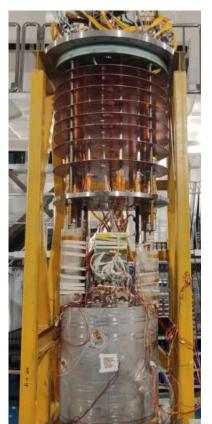
Discovery of 122 phase IBS

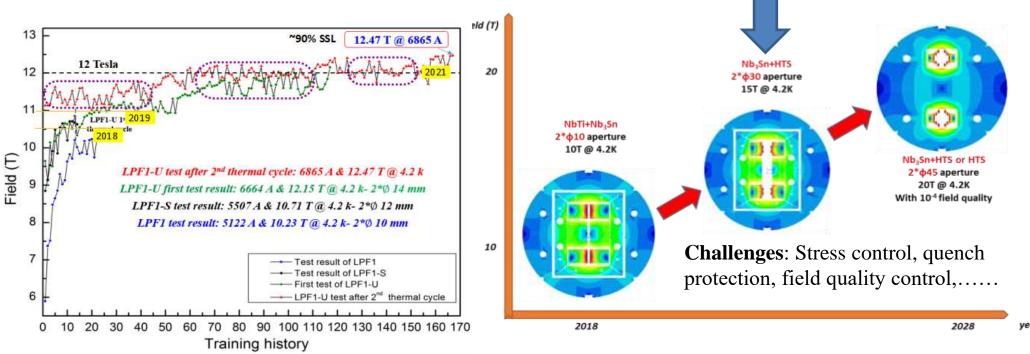
2016

2018

2020

2022


 IBS solenoid at 24 T Racetrack at 8 T $J_{e} = 300 \text{ A/mm}^{2}$ @ 10 T, 4.2 K


J_e of IBS expected to be similar as ReBCO in 2020s with better mechanical properties and lower cost, ready for mass applications in ultra high field magnets

HF Magnet Development

16 T Model Dipole: Nb₃Sn 12~13 T + HTS 3~4 T; 14T has been reached, more test in 2024

Picture of LPF1-U

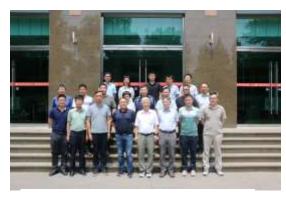
Dual aperture superconducting dipoles achieve 12T@4.2 K and 14T@4.2K entirely fabricated in China. The next step is reaching 16-20T

CEPC Site Preparations (three candidates in TDR)

Power Consumption of CEPC @ Higgs

2000				Н	liggs 30	MW					Н	iggs 50	MW		
SN	System	Collider	Booster	Linac	BTL	IR	Surface building	Total	Collider	Booster	Linac	BTL	IR	Surface building	Total
1	RF Power Source	96.90	1.40	11.10				109.40	161.60	1.73	14.10				177.40
2	Crygenic system	9.72	1.71			0.14		11.57	9.17	1.77			0.14		11.08
3	Vacuum System	5.40	4.20	0.60				10.20	5.40	4.20	0.60				10.20
4	Magnet Power Supplies	44.50	9.80	2.50	1.10	0.30		58.20	44.50	9.80	2.50	1.10	0.30		58.20
5	Instrumentation	1.30	0.70	0.20				2.20	1.30	0.70	0.20				2.20
6	Radiation Protection	0.30		0.10				0.40	0.30		0.10				0.40
7	Control System	1.00	0.60	0.20				1.80	1.00	0.60	0.20				1.00
8	Experimental devices					4.00		4.00					4.00		4.00
9	Utilities	37.80	3.20	1.80	0.60	1.20		44.60	46.40	3.80	2.50	0.60	1.20		54.50
10	General services	7.20		0.30	0.20	0.20	12.00	19.90	7.20		0.30	0.20	0.20	12.00	19.90
	Total	204.12	21.61	16.80	1.90	5.84	12.00	262.27	276.87	22.60	20.50	1.90	5.84	12.00	339.71

Various measures will be studied and implemented towards a green collider, as discussed in the Mini workshop of accelerator, Jan. 18-19, 2024, HKUST-IAS, Hong Kong


https://indico.cern.ch/event/1335278/timetable/?view=standard

CEPC Accelerator International TDR Review and Cost Review June 12-16, and Sept. 11-15, 2023, in HKUST-IAS, Hong Kong

CEPC Accelerator TDR Review June 12-16, 2023, Hong Kong

Domestic Civil Engineering Cost Review, June 26, 2023, IHEP

CEPC Accelerator TDR Cost Review Sept. 11-15, 2023, Hong Kong

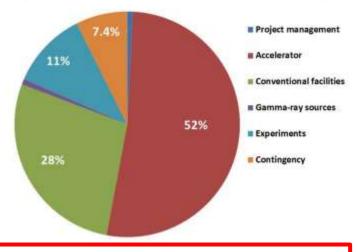

9th CEPC IAC 2023 Meeting Oct. 30-31, 2023, IHEP

Table 12.1.2: CEPC project cost breakdown, (Unit: 100,000,000 yuan) Total 364 100% 0.8% Project management 190 52% Accelerator Conventional facilities 101 28% 0.8% Gamma-ray beam lines 40 11%

27

7.4%

Distribution of CEPC Project total TDR cost of 36.4B RMB

CEPC accelerator TDR has been completed and formally released on December 25, 2023

CEPC accelerator TDR link: (arXiv: 2312.14363)

CEPC accelerator TDR releasing news:

http://english.ihep.cas.cn/nw/han/y23/202312/t20231229 654555.html

Experiments

Contingency (8%)

CEPC Accelerator TDR International Reviews and CEPC IAC Meeting Endorsement

June 12-16, 2023, in HKUST-IAS, Hong Kong

Chaired by Frank Zimmermann

Sept. 11-15, 2023, in HKUST-IAS, Hong Kong

Chaired by Loinid Rivkin

Phase 1 CEPC TDR Review Report

CEPC TDR Technical Review Committee

15 July 2023

The CEPC Study Group, hosted by the Institute of High Energy Physics (IHEP), has been working on the design and development of a forefront e⁺e⁻ collider as a Higgs factory that can extend to energies corresponding to the Z, WW and the top-quark pairs, with the upgrade potential to a high-energy pp collider. The CEPC represents a "grand plan" proposed, studied, and to be constructed by Chinese scientists in close collaboration with international partners. Since the release of the CEPC Conceptual Design Report in 2018, the CEPC Study Group has devoted significant effort to the design optimisation, the R&D of key technologies and the study of the technical systems of the CEPC.

The CEPC Study Group has produced a draft Technical Design Report (TDR). The International Review Committee, chaired by Dr. Frank Zimmermann (CERN), was asked to conduct a first phase review of this TDR draft. This first phase review shall cover all but the cost and site aspects of the CEPC.

The Phase 1 CEPC TDR Review Committee meeting was held in person at HKUST from 12 to 16 June 2023.

https://indico.ihep.ac.cn/event/19262/timetable/

Oct. 30-31, 2023, in IHEP

Chaired by Brian Foster

The Ninth Meeting of the CEPC-SppC International Advisory Committee

IAC Committee
M. E. Biagini, Y.-H. Chang, A. Cohen,
M. Davier, M. Demarteau, B. Foster (Chair),
B. Heinemann, K. Jakobs, L. Linssen,
L. Maiani, M.L. Mangano, T. Nakada, S. Stapnes,
G. N. Taylor, A. Yamamoto, H. Zhao

November 14th, 2023

https://indico.ihep.ac.cn/event/20107

CEPC Accelerator TDR Cost Review

The CEPC Accelerator TDR Cost Review committee examined the cost estimate of the TDR of accelerator systems for the first stage of the CEPC project operated as a Higgs factory with synchrotron radiation power up to 30 MW per beam (including all infrastructure that is not easily upgradeable and is already designed to operate up to the ttbar energy and at 50 MW). The cost estimate under review does not include the civil engineering, the detectors at the IPs with their technical services, and the central computing services.

In the opinion of the committee the cost estimate presented is sufficiently complete to form a proper basis for the next iteration that will be done during the EDR stage.

https://indico.ihep.ac.cn/event/19262/timetable/

The IAC also supports another key conclusion in the TDR Review Report, that the accelerator team is well prepared to enter the EDR phase.

-The IAC also support another conclusion in the TDR Review Report that the accelerator team is well prepared to enter the EDR phase

CEPC Engineering Design Report (EDR) Goal

2012.9 CEPC proposed

2015.3 Pre-CDR

2018.11

CDR

2023.10 TDR 2025
CEPC Proposal
CEPC Detector

reference design

2027 15th five year plan

EDR Start of construction

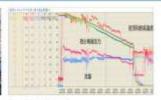
CEPC EDR Phase General Goal: 2024-2027

After completion CEPC accelerator TDR in 2023, CEPC accelerator will enter into the Engineering Design Report (EDR) phase (2024-2027), which is also the preparation phase with the aim for CEPC proposal to be presented to and selected by Chinese government around 2025 for the construction start during the "15th five year plan (2026-2030)" (for example, around 2027) and completion around 2035 (the end of the 16th five year plan).

CEPC EDR includes accelerator and detector (TDRrd)

CEPC detector TDR reference design (rd) will be released by June 30, 2025

CEPC Accelerator EDR Phase goals, scope and the working plan (preliminary) of 35 WGs summarized in a documents of 20 pages to be reviewed by IARC in 2024

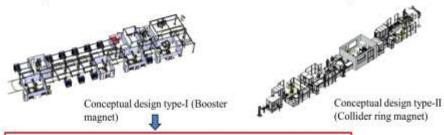

Some Key Issues in EDR (examples)-1

CEPC Accelerator Main EDR Development: SRF

CEPC collider ring 650MHz 2*cell short test module has been completed in TDR phase

The collider Higgs mode for 30 MW SR power per beam will use 32 units of 11 m-long collider cryomodules will contain six 650 MHz 2-cell cavities, and therefore, a full size 650 MHz cryomodule will be developed in EDR

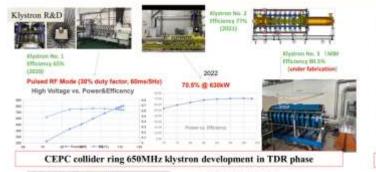
CSPC Accelerator EDA Plan J. Gas.


HEDST-ON HEP Conference, Soc. 22, 2024, Bong Many

- 21

CEPC Magnets' Automatic Production Lines in EDR

To reduce the fabrication cost of the magnets of CEPC, automatic magnet production lines will be demonstrated in EDR and used during construction



Jan.-Sept. 2024 : Complete the CEPC booster magnet automatic fabrication facility design.

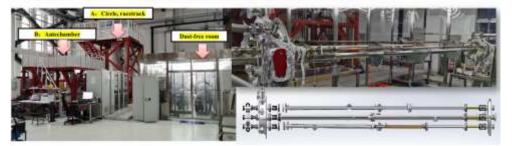
Oct. 2024-Jun. 2025: Complete the small scale demonstration facility for booster iron core fabrication.

9

CEPC Accelerator Main EDR Development: Klystrons

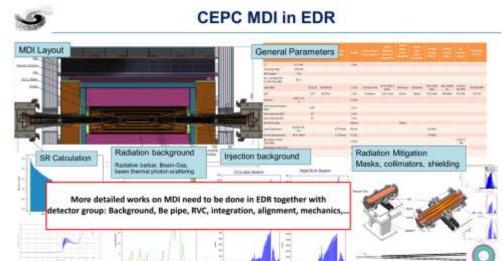
Parameters .	Value
Frequency	5720 MHz
Output Power	80MW
Pulsed width	2.5us
Repetition rate	100Hz
Gain	54 dB
Efficiency	47%
3dB bandwith	±5MHz
Beam voltage	420 kV
Beam current	403 A
Focusing field	0.28 T

C band 5729MHz 80MW Klystron

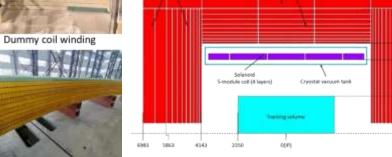


HEDSTEAN HEP CONTINUES, Inc. 22, 2024; Hong Kong

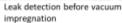
CRPC Assistment SDR Plan-J. Oan


Massive Production Line of NEG Coating Vacuum Chambers in EDR

- The coating device A: Vacuum chambers are connected in parallel to 6 groups, each group of vacuum chambers length should be lower than 3.5m, outer diameter is about 0.47m;
- The coating device B: Antechamber are connected in parallel to 4 groups, each group of vacuum chambers length should be lower than 1.5m, due to its discharge difficulty.
- Two setups of NEG coating have been built for vacuum pipes of HEPS at IHEP Lab. And a lot of test vacuum pipeshave been coated, which shows that NEG film has good adhesion and thickness distribution.
- In EDR phase a dedicated CEPC NEG coated vacuum chamber production line is planned

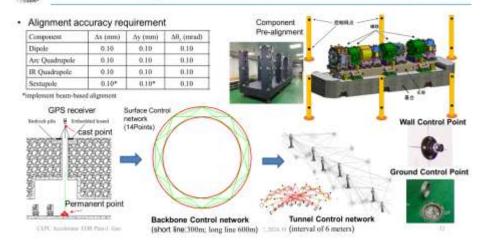


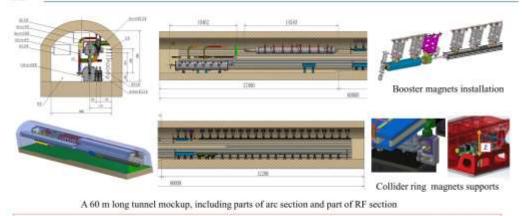
Some Key Issues in EDR (examples)-2



Detector dummy coil development

Winding platform





impregnation

CEPC Alignment and Installation Plan in EDR

CEPC Tunnel Mockup for Installation in EDR

To demonstrate the inside tunnel alignment and installation, especially for booster installation on the roof of the tunnel

Circular Electron

The IARC was pli TDR. The quality

even if not alread

CEPC Accelerator IARC Meetings in TDR and EDR

International Accelerator Review Committee (IARC) under IAC

The 2019 CEPC International Accelerator Review Committee

Review Report

December £ 2010

IARC chair: Katsunobu Oide from 2019-2020 IARC chair: Marica Biagini from 2020-now

The 2021 CEPC International Accelerator Review
Committee

Review Report

May 19, 2021

2021 Second CEPC IARC Meeting

IARC Committee

October 20th, 2021

The CEPC Inter due to the Covid IARC meeting.

The Circular Electron Positron Collider (SppC) Study Group, currer currently hosted eggy Physics of the Chinese Academ design of the CEPC accelerator in 2t ternational Advisory Committee (IAC) get year of 2022. Meanwhile an International Committee (IAC)

(IARC) has been established to advis

2022 First CEPC IARC Meeting

IARC Committee

June 17th, 2022

The Circular Electron Positron Collider (CEPC) and Super Proton-Proton

All IARC reports (2019-2022) on IAC2022 Meeting Indico:

https://indico.ihep.ac.cn/event/17996/page/1415-materials

on Nov. 18-21, 2

region, and the compatibility with an upgrade to the t-thar energy region, as well as with a future SppC.

As required by IAC, extended IARC will review the CEPC accelerator progresses on the EDR in September, 2024

lider

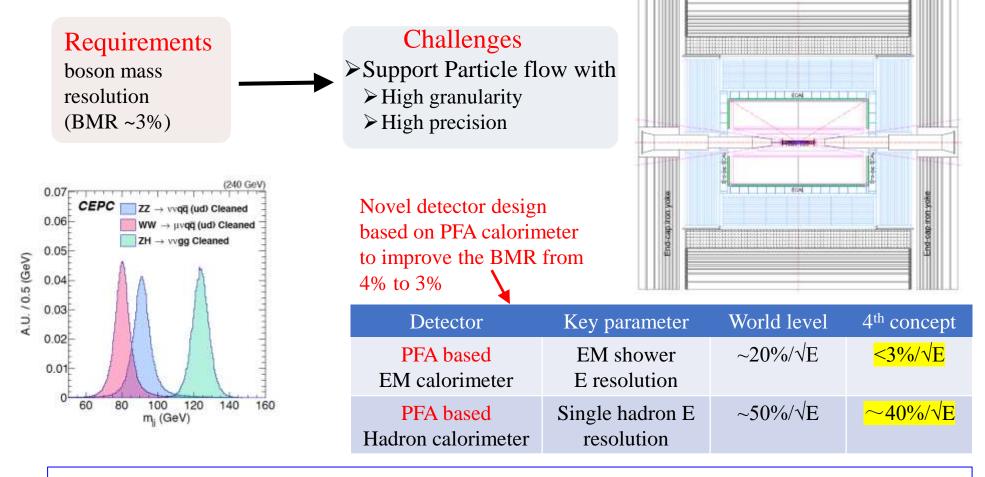
AUDOTABA DISSISE DODAS III INC ACCRETATO OSSER ADA ODDINISADO

- based on CEPC TDR design, the CEPC dedicated key technology R&D status and the technologies accumulated from the other IHEP responsible large-scale accelerator facilities, such as HEPS, could the CEPC accelerator group start the TDR editorial process and EDR preparation?
- with the new progresses between CEPC and FCCee possible synergy and the continuing collaboration with SuperKEKB, are there more suggestions on the next steps of international collaborations?

Nov. 2019: https://indico.ihep.ac.cn/event/9960/ May, 2021: https://indico.ihep.ac.cn/event/14295

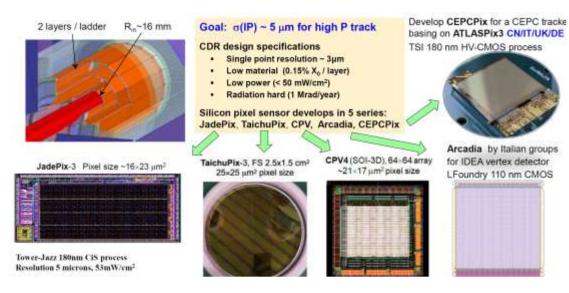
October, 2021: https://indico.ihep.ac.cn/event/15177

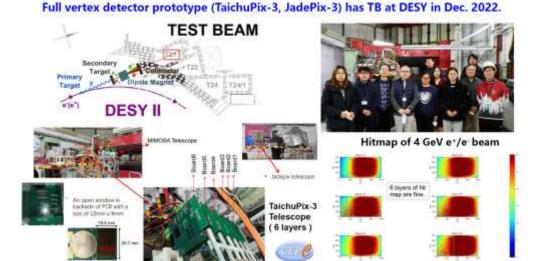
June, 2022: https://indico.ihep.ac.cn/event/16801/


Jan. 2024: preparation zoom meeting

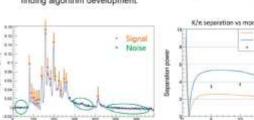
Sept. 2024: first extended IARC meeting in EDR phase

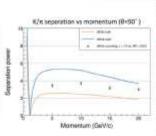
After the completion of CEPC CDR in Nov. 2018, since the first CEPC IARC meeting in 2019, there has been totally 4 IARC meetings till 2022, with each meeting a carefully written IARC report, which are very helpful for CEPC accelerator in TDR phase and beyond.


CEPC Detector: Idea of the "4th Concept"

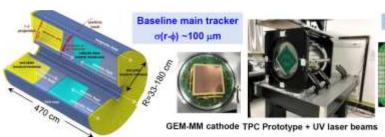


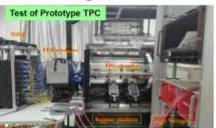
- Silicon combined with gaseous chamber as the tracker and PID
- ECAL based on crystals with timing for 3D shower profile for PFA and EM energy
- Scintillation glass HCAL for better hadron sampling and energy resolution


R&D: Vertex Detector and Tracker



- Cluster counting method, or dN/dx, measures the number of primary ionization
- Can be optimized specifically for PID: larger cell size, no stereo layers, different gas mixture.
- Garfield++ for simulation, realistic electronics, peak finding algorithm development.

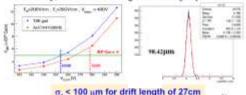



A DC between 2 outer layers

Full silicon

trackers

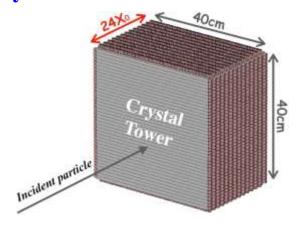
IHEP and Italian INFN groups have close collaboration and regular meetings. IHEP joined the TB (led by INFN group) in 2021 and 2022



Challenge: Ion backflow (IBF) affects the resolution. It can be corrected by a laser calibration at low luminosity, but difficult at high luminosity Z-pole.

MOST 1 (IHEP+THU)

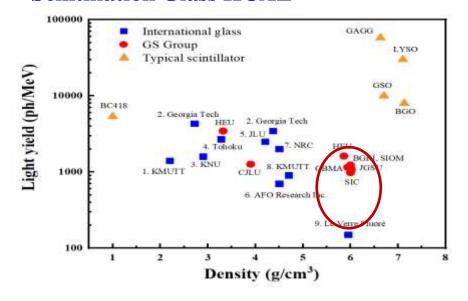
65 nm CMOS ASIC


Low power FEE ASIC

R&D: Calorimeters with PFA

Crystal ECAL

Energy resolution $\frac{\sim 3\%}{\sqrt{E}} \oplus \sim 1\%$

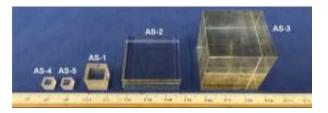

Features:

- Good energy resolution
- > 3D shower info. with limited readout channel
- ➤ Shower separation < 4 cm

Main issues for R&D

➤ Jet reconstruction and PFA algorithm

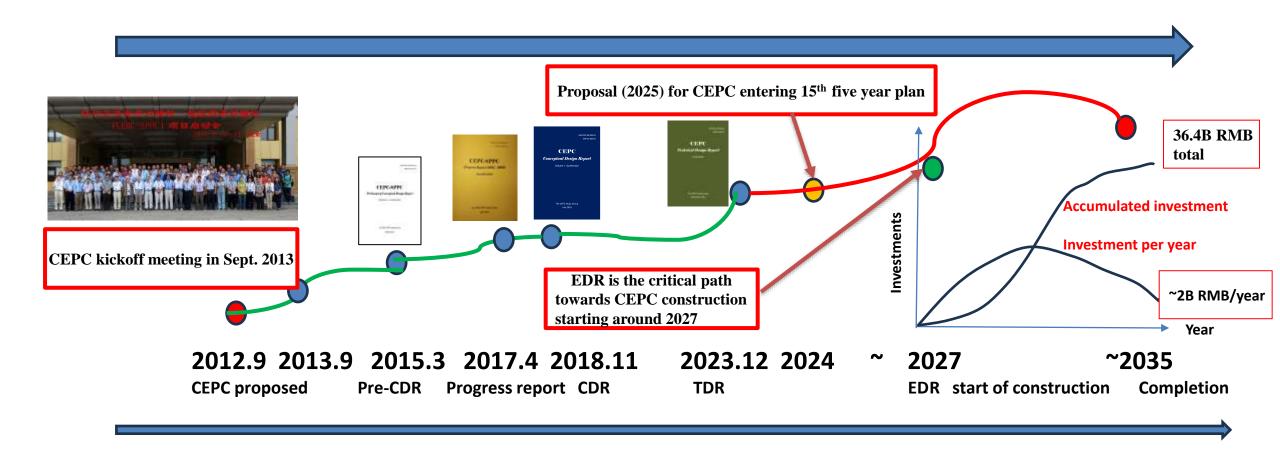
Scintillation Glass HCAL


Energy resolution ~40%/ $\sqrt{E \pm ~2\%}$

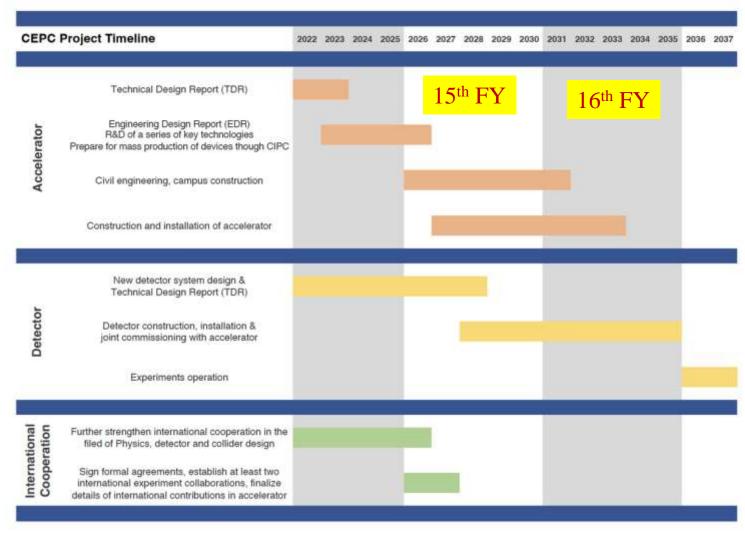
Features:

Large sampling ratio at low cost

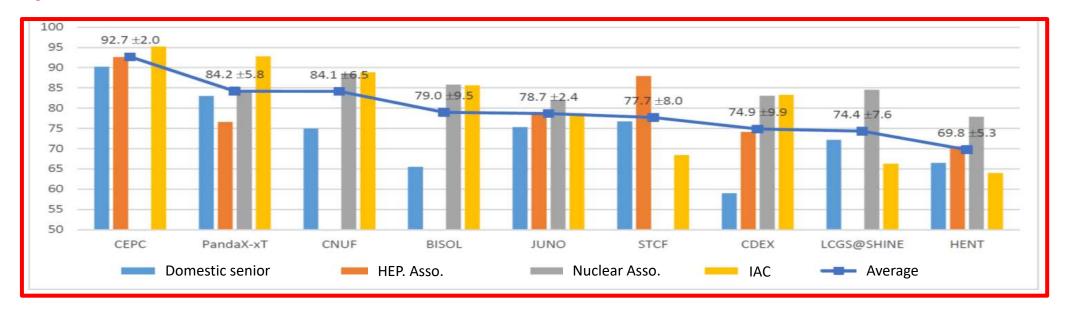
Main issues for R&D


➤ high density, high light yield, radiation hardness, production

CEPC Evolution Milestones

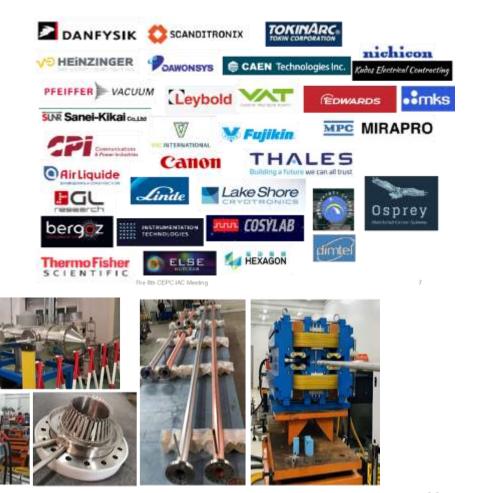

Year 2012 2013 2015 2017 2018 2023 2025 2027 2030 2035

CEPC Planning and Schedule


TDR (2023), EDR(2027), start of construction (2027-8)

CEPC Project Development towards construction

- TDR has been completed (review + revision) to be formally released on Dec. 25, 2023.
- CAS is planning for the 15th 5-years plan for large science projects, and a steering committee has been established, chaired by the president of CAS.
- High energy physics and nuclear physics, is one of the 8 groups (fields).
- CEPC is ranked No. 1, with the smallest uncertainties, by every evaluation committee both domestic and international one among all the collected proposals.
- A final report has been submitted to CAS for consideration.
- The above mentioned actual process is within CAS and the following national selection process will be decisive.


Participating and Potential Collaborating Companies in China and Worldwide

	System
1	Magnet
2	Power supplier
3	Vacuum
4	Mechanics
5	RF Power
6	SRF/ RF
7	Cryogenics
8	Instrumentation
9	Control
10	Survey and alignment
11	Radiation protection
12	e-e+Sources

CEPC Industrial Promotion Consortium (CIPC, established in Nov. 2017)

Potential international collaborating suppliers and partners worldwide

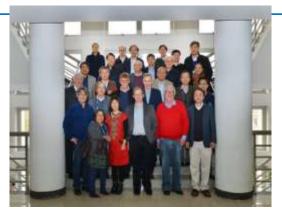
CEPC International Collaboration-1

CEPC attracts significant International participation and collaborations

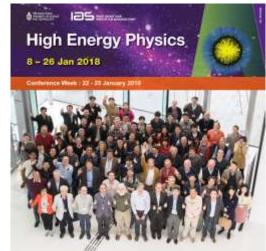
Accelerator TDR report: 1114 authors from 278 institutes (including 159 International Institutes, 38 countries) arXiv: 2312.14363

- More than 20 MoUs have been signed with international institutions and universities
- CEPC International Workshop since 2014
- EU-US versions of CEPC WS since 2018
- Annual working month at HKUST-IAS (mini workshops and HEP conference) since 2015

CEPC International Collaboration-2



The first CEPC-SppC international Collaboration Workshop Nov 6-8, 2017, IHEP, Bejing


http://indico.ihep.ac.cn/event/6618

Workshop on the Circuar Electron Positron Collider-EU edition May 24-26, 2018, Università degli Studi Roma Tre, Rome, Italy https://agenda.infn.it/conferenceDisplay.py?ovw=True&confld=14816

3rd CEPC IAC, Nov 8-9, 2017, IHEP, Beijing

IAS Higgh Energy Physics Workshop (Since 2015)
http://iasprogram.ust.hk/hep/2018

CEPC Workshop-EU, 2019 Sep 2019, Oxford, UK

https://agenda.infn.it/conferenceDisplay.py?ovw=True&confld=14816

CEPC Workshop, University of Chicago, September 16-18, 2019

http://cepc.uchicago.edu/

CEPC Workshop, he Catholic University of America, 22-23 April 2020, Washingtong, USA (online) https://indico.cern.ch/event/863751/

More than

20 MoUs

have been

signed with

institutions

universities

and

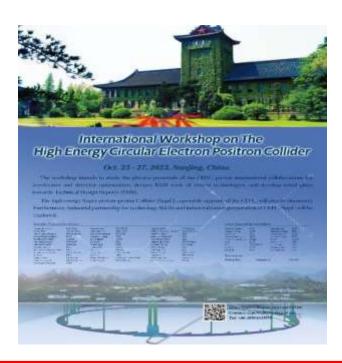
international

CEPC International Collaboration-3

HKIAS23 HEP Conference Feb. 14-16, 2023

https://indico.cern.ch/event/1215937/

The 2023 International Workshop on Circular Electron Positron Collider, EUEdition, University of Edinburgh, July 3-6, 2023


https://indico.ph.ed.ac.uk/event/259/overview

The 2023 international workshop on the high energy Circular Electron Positron Collider (CEPC)

https://indico.ihep.ac.cn/event/19316/

The 2024 HKUST IAS Mini workshop and conference were held from Jan. 18-19, and Jan. 22-25, 2024, respectively. https://indico.cern.ch/event/1335278/timetable/?view=standard

The 2024 international workshop of CEPC, EU-Edition Will be held in Marseille, France, April 8-11, 2024. https://indico.in2p3.fr/event/20053/overview

CEPC in Synergy with other Accelerator Projects in China 42

Project name	Machine type	Location	Cost (B RMB)	Completion time
CEPC	Higgs factory Upto ttar energy	Led by IHEP, China	36.4 (where accelerator 19)	Around 2035 (starting time around 2027)
BEPCII-U	e+e-collider 2.8GeV/beam	IHEP (Beijing)	0.15	2025
HEPS	4 th generation light source of 6GeV	IHEP (Huanrou)	5	2025
SAPS	4th generation light source of 3.5GeV	IHEP (Dongguan)	3	2031 (in R&D, to be approved)
HALF	4th generation light source of 2.2GeV	USTC (Hefei)	2.8	2028
SHINE	Hard XFEL of 8GeV	Shanghai-Tech Univ., SARI and SIOM of CAS (Shanghai)	10	2027
S3XFEL	S3XFEL of 2.5GeV	Shenzhen IASF	11.4	2031
DALS	FEL of 1GeV	Dalian DICP	-	(in R&D, to be approved,)
HIAF	High Intensity heavy ion Accelerator Facility	IMP, Huizhou	2.8	2025
CIADS	Nuclear waste transmutation	IMP, Huizhou	4	2027
CSNS-II	Spallation Neutron source proton injector of 300MeV	IHEP, Dongguan	2.9	2029

The total cost of the accelerator projects under construction:39B RMB more than CEPC cost of 36.4B RMB

Summary

- CEPC addressed most pressing & critical science problems in particle physics
- Accelerator design and technology R&D are reaching maturity, TDR completed in 2023, ready for construction in 3-5 years
- Reference detector TDR under preparation, to be completed by 2025 for the proposal of the 15th 5-year plan
- A strong and experienced team, backed by IHEP and international teams
- Schedule will follow China's 15th 5-year plan, Call for collaboration and proposals once CEPC is (preliminary) approved
- Continue to work with government and funding agencies to get support

Acknowledgements

Thanks go to CEPC-SppC team's hard works, international and CIPC collaborations

Special thanks to CEPC IB, SC, IAC, IARC and TDR review (+cost) committee's critical advices, suggestions and encouragement

Thanks for your attention