Cosmology: the era of new observables

Dmitry Gorbunov

Institute for Nuclear Research of RAS, Moscow

on I Institute for Nuclear Resear loscow region, Russia, 03.04.2

Dmitry Gorbunov (INR)

3 April 2024

Universe is expanding

Expansion: redshift z

 $\lambda_{abs.}/\lambda_{em.} \equiv 1+z$

Expansion: redshift z

 $\lambda_{abs.}/\lambda_{em.} \equiv 1+z$

N N

Universe is homogeneous and isotropic

N N

Conclusions from observations

The Universe is homogeneous, isotropic, hot and expanding...

Conclusions

interval between events gets modified

 $\Delta s^2 = c^2 \Delta t^2 - \frac{a^2(t)}{\Delta x^2} \Delta x^2$

in GR expansion is described by the Friedmann equation

$$\left(\frac{\dot{a}}{a}\right)^2 = H^2(t) = \frac{8\pi}{3} G \rho_{\text{density}}^{\text{energy}}$$

$$\rho_{\text{density}}^{\text{energy}} = \rho_{\text{radiation}} + \rho_{\text{matter}} + \dots$$

 in the past the matter density was higher, our Universe was "hotter" filled with electromagnetic plasma

$$\rho_{\text{matter}} \propto 1/a^3(t), \ \rho_{\text{radiation}} \propto 1/a^4(t), \ \rho_{\text{curvature}} \propto 1/a^2(t)$$

certainly known up to $T \sim 1 \,\text{MeV} \sim 10^{10} \,\text{K}$

Astrophysical and cosmological data are in agreement

$\left(rac{\dot{a}}{a} ight)^2 = H^2\left(t ight) = ho_{ ext{density}}^{ ext{energy}} = ho_{ ext{radiation}}$	$+\frac{8\pi}{3} G \rho_{\text{density}}^{\text{energy}}$ $+\rho_{\text{matter}}^{\text{ordinary}} + \rho_{\text{matter}}^{\text{dark}} + \rho_{\Lambda}$
$ \rho_{\text{radiation}} \propto 1/a^4(t) \propto T^4(t), \rho_{\text{matter}} \propto 1/a^3(t) $ $ \rho_{\Lambda} = \text{const} $	
$\frac{3H_0^2}{8\pi G} = \rho_{\rm density}^{\rm energy}(t_0)$	$\equiv \rho_c \approx 0.53 \times 10^{-5} \frac{\text{GeV}}{\text{cm}^3}$
radiation:	$\Omega_\gamma \equiv rac{ ho_\gamma}{ ho_c} = 0.5 imes 10^{-4}$
Baryons (H, He):	$\Omega_{\rm B} \equiv rac{ ho_{\rm B}}{ ho_c} = 0.046$
Neutrino:	$\Omega_{v}\equivrac{\Sigma m_{i}n_{v_{i}}}{ ho_{c}}<0.01$
Dark matter:	$\Omega_{\rm DM}\equiv rac{ ho_{\rm DM}}{2s}=0.28$
Dark energy:	$\Omega_{\Lambda} \equiv rac{ ho_{c}}{ ho_{c}} = 0.68$
	 (三) < 三)
3 April 2024	03.04.2024, JINB 7/54

Dmitry Gorbunov (INR)

3 April 2024

Recombination: $p + e \rightarrow H + \gamma$, $T_{rec} \approx 0.25 \text{ eV}$

Large Scale Structure

CMB anisotropy

4 3 > 4 3

Dmitry Gorbunov (INR)

Dmitry Gorbunov (INR)

These inhomogeneities (matter perturbations)

originate from the initial matter density (scalar) perturbations

 $\delta \rho / \rho \sim \delta T / T \sim 10^{-4}$, which are

03.04.2024, JINR

adiabatic
$$\delta\left(\frac{n_B}{s}\right) = \delta\left(\frac{n_{DM}}{s}\right) = \delta\left(\frac{n_L}{s}\right)$$
Gaussian $\left\langle\frac{\delta\rho}{\rho}(\mathbf{k})\frac{\delta\rho}{\rho}(\mathbf{k}')\right\rangle \propto \left(\frac{\delta\rho}{\rho}(\mathbf{k})\right)^2 \times \delta(\mathbf{k} + \mathbf{k}')$
flat spectrum $\left\langle\left(\frac{\delta\rho}{\rho}(\mathbf{x})\right)^2\right\rangle = \int_0^\infty \frac{d\mathbf{k}}{\mathbf{k}} \mathscr{P}_S(\mathbf{k}) \qquad \mathscr{P}_S(\mathbf{k}) \approx \text{const}$
LSS and CMB $\mathscr{P}_S \equiv A_S \times \left(\frac{k}{k_*}\right)^{n_S-1} \qquad A_S \approx 2.5 \times 10^{-9}, \quad n_S \approx 0.97$

3 April 2024

N

Standard cosmological model $ds^2 = dt^2 - a^2(t)dx^2$

$$\left(\frac{\dot{a}}{a}\right)^{2} \equiv H^{2} = H_{0}^{2} \left[\Omega_{\Lambda} + (\Omega_{DM} + \Omega_{B} + \Omega_{\nu, m \neq 0}) \left(\frac{a_{0}}{a}\right)^{3} + (\Omega_{\gamma} + \Omega_{\nu, m = 0}) \left(\frac{a_{0}}{a}\right)^{4}\right]$$

- $\bullet \ T_{\gamma}\,{=}\,2.735\,K, \quad \Longrightarrow \quad \Omega_{\gamma}\,{\sim}\,10^{-5}$
- $N_v \approx 3$, $\Sigma m_v < 0.2 \, \mathrm{eV}$ \implies $\Omega_{v, \neq 0}, \, \Omega_{v, 0} \sim 10^{-5}$?
- $\Omega_B = 4.5\% \implies \eta_B \equiv n_B/n_\gamma = 6 \times 10^{-10}$
- $\Omega_{DM} = 27.5\%$
- $H_0 = 67 \, {\rm km/s/Mpc} \implies
 ho_0 = 5 \, {\rm GeV/m^3}$
- $\Omega_{\Lambda} = 68\% \implies$ flat space
- adiabatic, gaussian matter perturbations

$$\langle \left(\frac{\delta \rho}{\rho}\right)^2 \rangle \sim A_S \int \frac{dk}{k} \left(\frac{k}{k_*}\right)^{n_S - 1}$$

with $A_S = 3 \times 10^{-9}$ and $n_S = 0.97$

- no tensor perturbations, $r \equiv A_T / A_S < 0.05$
- reionization at $z \equiv a_0/a = 10$

Dark Energy: nonclumping matter?

- estimates of Matter contribution confined in galaxies and clusters $\rho_c - \rho_M \neq 0$ but the Universe is flat, so $\rho_{curv} \simeq 0$
- corrections to the Hubble law : red shift brightness curves for standard candles (SN la)
- The age of the Universe
- CMB anisotropy, large scale structures (galaxy clusters formation), etc

Local group members will survive

$$ho_{\Lambda} = 0.68
ho_{c}$$

 $a(t) \propto e^{H_{\Lambda}t}$

 $ho_\Lambda \sim 10^{-5}~\text{GeV/cm}^3 \sim \left(10^{-11.5}~\text{GeV}
ight)^4$

- 《문》《문》 문

Dmitry Gorbunov (INR)

2

13/54

Local Group and nearest galaxies

Dmitry Gorbunov (INR)

NR

Dark Energy: all evidences are from cosmology

Working hypothesis is cosmological constant $\Lambda \approx (2.5 \times 10^{-3} \text{ eV})^4$: $\rho = w(t)\rho$, w = const = -1, $\rho = \Lambda$

$$S_{\Lambda} = -\Lambda \int d^4x \sqrt{-\det g_{\mu\nu}}$$

both parts contribute

$$S_{\text{grav}} = -\frac{1}{16\pi G} \int d^4 x \sqrt{-\det g_{\mu\nu}} R ,$$
$$S_{\text{matter}} = \int d^4 x \sqrt{-\det g_{\mu\nu}} \left(\frac{1}{2} g^{\lambda\rho} \partial_\lambda \phi \partial_\rho \phi - V(\phi)\right)$$

natural values

 $\Lambda_{\text{grav}} \sim 1/G^2 \sim (10^{19} \,\text{GeV})^4 , \quad \Lambda_{\text{matter}} \sim V(\phi_{\text{vac}}) \sim (100 \,\text{GeV})^4, (100 \,\text{MeV})^4, \dots$ Why Λ is small?
Why $\Lambda \sim \rho_{\text{matter}}$?
Why $\rho_B \sim \rho_{DM} \sim \rho_{\Lambda} \underset{\approx}{\text{today}}?$

Dmitry Gorbunov (INR)

 $H_0 \quad [km \ s^{-1} \ Mpc^{-1}]$

э

ä

N

a(t) reveals the composition of the present Universe

$$H^{2}(z) = H_{0}^{2}\left(\Omega_{\Lambda} + \Omega_{M}(1+z)^{3} + \Omega_{cur}(1+z)^{2} + \Omega_{rad}(1+z)^{4} + \dots\right), \quad 1+z \equiv \frac{a_{0}}{a(t)}$$

 $ds^{2} = dt^{2} - a^{2}(t) \left(d\rho^{2} + r^{2}(\rho) d\Sigma_{(2)}^{2} \right)$

How do we check it?

Light propagation changes...

"standard candles"

by measuring distance L to an object!

$$L(z) = a_0 \times r(\rho(z)), \quad \rho(z) = \int d\rho = \int_t^{t_0} \frac{dt'}{a(t')} = \int_0^z \frac{dz'}{H(z')} \to \frac{z}{H_0}, \text{ at } z \to 0$$

Measuring brightness J of an object of known luminosity F

$$J = \frac{F}{4\pi L^2} \longrightarrow \frac{F}{4\pi L^2(z) \times (1+z)^2}$$

- New observables:
 - time delays between images of SN explosion
 - standard sirens: Gravitational Waves from observed astrophysical source

- . . .

A B A B A B
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B

Sound waves in photon-electron plasma

• Measuring angular size θ of an object of known size d

single-type galaxies, and sound horizon !!

- Subhorizon Inhomogeneities of photons $\delta \rho_{\gamma} / \rho_{\gamma}$ oscillate with constant amplitude at RD and with decreasing amplitude at MD, thus we can measure $T_{RD/MD} / T_{rec}$
- Phase of oscillations decoupled after recombination depends on the wave-length, recombination time and sound speed

$$\delta \rho_{\gamma} / \rho_{\gamma} \propto \cos\left(k \int_{0}^{t_{\text{rec}}} \frac{v_{s} \, dt}{a(t)}\right) = \cos(k I_{\text{sound}}), \quad I_{\text{sound}} \sim \frac{1/\sqrt{3}}{H_{\text{rec}}}$$

$$\delta T(\theta, \varphi) = \sum a_{lm} Y_{lm}(\theta, \varphi) , \qquad \langle a_{lm}^* a_{lm} \rangle = C_l \equiv 2\pi \mathscr{D}_l / (l(l+1))$$

CMB measurements $I_{rec}, \Omega_{DM}, \Omega_B, \Omega_\Lambda, \Delta_{\mathscr{R}}, n_s, z_{rei}$

2105.05208

Need new parameters?

- dynamical DE: $p = -\omega(z)\rho$,...

- multicomponent DM:

decaying, talking to DE, talking to baryons, sterile neutrinnos, axions,...

- massive neutrinos, non-zero curvature,...

 nonstandard cosmology: early dark energy, late rapid transition,...

Dmitry Gorbunov (INR)

3 April 2024

On top of that: propagation in expanding Universe

2105.05208

1807.06209

◆ ヨ → ◆ ヨ → 「 ヨ

Dmitry Gorbunov (INR)

3 April 2024

03.04.2024, JINR 23/54

1707.01004 Measurement of $\eta_B=n_B/n_\gamma$ at $T\sim$ 1 MeV

Lack of Lithium...

Exotics needed?

ЯN

Present observations... probe ξ_{v_e} and ΔN_v

2208.03201 Helium abundance

May be useful ...

to safe sterile neutrinos

Dmitry Gorbunov (INR)

3 April 2024

Future with Simons Observatory and CMB-S4 2208.03201

N

Observables in cosmology

• Astrophysical data

- Observations in galaxies: stars and clouds 3d-map of Milky Way
- Observations in galaxy clusters: galaxies, gas, distortions

Cosmological data

- Observation of sources at cosmological distances (far=early)
- Baryonic Aciustic (Sakharov) Oscillations (BAO) in two-point galaxy correlation function
 Full shape function
- Evolution of galaxy clusters in the Universe
- Anisotropy and polarization of Cosmic Microwave Background (CMB)
- Weak lensing on late-time cosmic structures
- Sunyaev–Zeldovich clusters
- Ly-α forest
- ▶ ...
- ►
- 3d-map of galaxies
- 21cm cosmic field
- Relic Gravitational Waves...?

A B A B A B
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B

Galactic dark halos:

flat rotation curves

Ursa Major III: $\Omega_{DM} \propto 1/\langle \sigma v \rangle$, $F \propto \langle \sigma v \rangle \times n(r)^2$ 2311.14611

30/54

Ursa Major III

▲ 臣 ➤ ▲ 臣 ➤ □ 臣

NR

Next generation: CTA

2207.04572

Dmitry Gorbunov (INR)

3 April 2024

03.04.2024, JINR

33/54

NN

N

Observables in cosmology

• Astrophysical data

- Observations in galaxies: stars and clouds 3d-map of Milky Way
- Observations in galaxy clusters: galaxies, gas, distortions

Cosmological data

- Observation of sources at cosmological distances (far=early)
- Baryonic Aciustic (Sakharov) Oscillations (BAO) in two-point galaxy correlation function
 Full shape function
- Evolution of galaxy clusters in the Universe
- Anisotropy and polarization of Cosmic Microwave Background (CMB)
- Weak lensing on late-time cosmic structures
- Sunyaev–Zeldovich clusters
- Ly-α forest
- ▶ ...
- ►
- 3d-map of galaxies
- 21cm cosmic field
- Relic Gravitational Waves...?

A B A B A B
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B

Subhorizon modes (k/a > H) at various stages

Dmitry Gorbunov (INR)

Key observable: matter perturbations

CMB is isotropic, but "up to corrections, of course..." Earth movement with respect to CMB $\frac{\Delta T_{dipole}}{T_{dipole}} \sim 10^{-3}$ More complex anisotropy! $\frac{\Delta T}{T} \sim 10^{-4} - 10^{-5}$ ۰ There were matter inhomogenities $\Delta \rho / \rho \sim \Delta T / T$ at the stage of recombination $(e + p \rightarrow \gamma + H^*)$ ۰ Jeans instability in the system of gravitating particles at rest $\Longrightarrow \Delta \rho / \rho \nearrow \Longrightarrow$ galaxies (CDM halos) Wavelength A [h⁻¹ Mpc] P(k) [(h⁻¹ Mpc)⁸] 104 1000 spectr 100 SDSS galaxies Cluster abundance ţ 10 Weak lensing ALyman Aloha Forest 0.001 0.01 0.1 Wavenumber k [h/Mpc]

Dmitry Gorbunov (INR)

3 April 2024

03.04.2024, JINR 39

39/54

Actually we observe rather narrow range

Dmitry Gorbunov (INR)

3 April 2024

03.04.2024, JINR 41/54

On top of that: propagation in expanding Universe

N

Observables in cosmology

• Astrophysical data

- Observations in galaxies: stars and clouds 3d-map of Milky Way
- Observations in galaxy clusters: galaxies, gas, distortions

Cosmological data

- Observation of sources at cosmological distances (far=early)
- Baryonic Aciustic (Sakharov) Oscillations (BAO) in two-point galaxy correlation function
 Full shape function
- Evolution of galaxy clusters in the Universe
- Anisotropy and polarization of Cosmic Microwave Background (CMB)
- Weak lensing on late-time cosmic structures
- Sunyaev–Zeldovich clusters
- Ly-α forest
- ▶ ...
- ►
- 3d-map of galaxies
- 21cm cosmic field
- Relic Gravitational Waves...?

A B A B A B
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B

э

44/54

Prospects in 2014

ÄR

Example: EW Ist order Phase Transition

2307.01072

Dmitry Gorbunov (INR)

New data and New observables

- more Hubble tracers
- 21cm map
- 3-d map from Euclid
- improved CMB anisotropy
- CMB polarisation
- relic GW from inflation ?
- relic GW from Phase Transitions, etc?
- relic BH ?

New cosmological parameters

- nature of DE and DM
- neutrino masses
- reionisation schedule
- nongaussianity?
- isocurvature modes?
- scale of inflation
- reheating mechanism
- cosmological evolution

A B A B A B
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B

- 《문》《문》 - 문

Dmitry Gorbunov ((INR)
-------------------	-------

- 《문》《문》 - 문

Dmitry Gorbunov (INR)

DM from oscillating scalar

 $0 \neq g^2 < 10^{-11}$ Z₂-invariant Higgs (Φ) portal

$$\Delta \mathscr{L} = \frac{1}{2} g^{\mu\nu} \partial_{\mu} X \partial_{\nu} X - \frac{1}{2} M^2 X^2 + \frac{g^2}{4} X^2 \Phi^{\dagger} \Phi - \frac{\lambda}{4} X^4$$

Higgs particles in plasma change the potential:

$$g^2 X^2 \Phi^{\dagger} \Phi \rightarrow g^2 X^2 T^2/3$$

 Z_2 symmetry is broken after reheating by the plasma contribution

Temperature decrease restores Z_2

2004.03410

$$\Delta \mathscr{L} = \frac{1}{2} g^{\mu\nu} \partial_{\mu} X \partial_{\nu} X - \frac{1}{2} M^2 X^2 + \frac{g^2 X^2 T^2}{3} - \frac{\lambda}{4} X^4$$

And the correct amount of DM by classical oscillating field

$$g^2\simeq 10^{-12} imes \left(rac{\lambda}{10^{-6}}
ight)^{6/5} imes \left(rac{10^6\,{
m GeV}}{M}
ight)^2$$

《문》《문》 문

 $p = \langle E_{kin} \rangle - \langle E_n \rangle = 0$

First results of Planck (2013)

Cosmic Background Radiation is polarized

