Измерение сечения $e^+e^- \rightarrow \pi^+\pi^-$ B эксперименте КМД-3: следствия для (g-2) мюона

Иван Логашенко (ИЯФ)

Научная сессия секции ядерной физики ОФН РАН

1—5 апр. 2024 г.

г. Дубна ОИЯИ

Introduction

The basics

Gyromagnetic ratio *g* connects magnetic moment μ and spin s

For point-like particle g = 2

Anomalous magnetic moment *a* arises in higher-orders

 $\vec{\mu}_S = g \frac{e}{2m} \vec{S}$ a = (g - 2)/2

 $a_e \approx a_\mu \approx \frac{\alpha}{2\pi} \approx 10^{-3}$ (QED dominated)

Idea of experiment: by comparing measured value of **a** with the theory prediction we probe extra contributions beyond theory expectations $a_{\mu}(strong)/a_{\mu}(QED) \approx 6 \times 10^{-5}$ $a_{\mu}(weak)/a_{\mu}(QED) \approx 10^{-6}$

Why muon? For massive fields there is natural scaling, which enhances contribution to a_{μ} by $(m_{\mu}/m_e)^2 \sim 43000$ $\Delta a \sim \left(\frac{m_l}{m_x}\right)^2$ m_l

Anomalous magnetic moment of electron The best precision is achieved for electrons (g-2). The value of a_e is used to get the determination of fine-structure constant α .

X. Fan, T. G. Myers, B. A. D. Sukra, G. Gabrielse, Phys.Rev.Lett. 130 (2023) 7, 071801

 $a_e = 1\ 159\ 652\ 180\ 59\ (13) \times 10^{-14}\ (0.11\ \text{ppb})$

	Δa (exp)	Hadronic	Weak	Weak/ Δa
a_e	0.11 ppb	~1.4 ppb	o.o3 ppb	0.3
a_{μ}	190 ppb	~52000 ppb	~1300 ppb	6.8

 $a_{\mu} \nabla \overline{a}_{e}$

 a_{μ} is more sensitive to contributions from heavy fields compared to a_e by factor ~20

Generations of a_{μ} measurements

NEVIS CERN 1-3 BNL **FNAL** 1965 1976 2006 1957 2021 1968 2023 $a_{\mu}(3\kappa c\pi) = 0.001\ 165\ 920\ 55\ (24)$ FNAL2023 *а*_µ(теория) = 0.001 165 918 10 (43) WP2020 QED Contributions of known Strong interactions Weak

Principles of CERN-III type measurement **1**. Spin precesses relative to momentum with frequency ω_a proportional directly to a_{μ}

$$\omega_a = \omega_s - \omega_c = \frac{a_{\mu}eB}{mc}$$

 $a_{\mu} = \frac{mc}{e} \frac{\omega_a}{B}$

Storage Ring

spin momentun

Need focusing!

Muons with p = 3.09 GeV/c are used

Focusing with electrostatic quadrupoles

2. Effect of electric field is cancels out for muons of "magic" momentum

$$\vec{\omega}_{a} = -\frac{e}{m} \left[a_{\mu} \vec{B} - \left(a_{\mu} - \frac{1}{\gamma^{2} - 1} \right) \frac{\vec{\beta} \times \vec{E}}{c} \right]$$

zero for $\gamma_{\mu} = 29.3$

Ivan Logashenko (BINP)

7

Muon G-2 Ring @FNAL

Muon G-2 collaboration

USA

- Boston
- Cornell
- Illinois
- James Madison
- Kentucky
- Massachusetts
- Michigan
- Michigan State
- Mississippi
- North Central
- Northern Illinois
- Regis
- Virginia
- Washington

USA National Labs

- Argonne
- Brookhaven
- Fermilab

181 collaborators33 Institutions7 countries

- Frascati
- Molise
- Naples
- Pisa
- Roma Tor Vergata
- Trieste
- Udine
- 🚷 Korea

- CAPP/IBS
- KAIST

Russia

- Budker/Novosibirsk
- JINR Dubna

United Kingdom

- Lancaster/Cockcroft
- Liverpool
- Manchester
- University College London

Muon g-2 Collaboration 7 countries, 35 institutions, 190 collaborators

Muon g-2 Collaboration Meeting @ Elba, May 2019

Final error table

Quantity	Correction [ppb]	Uncertainty [ppb]
ω_a^m (statistical)	_	201
$\omega_a^{\tilde{m}}$ (systematic)	_	25
Ce	451	32
C_p	170	10
C_{pa}	-27	13
C_{dd}	-15	17
C_{ml}	0	3
$f_{\text{calib}}\langle \omega_p'(\vec{r}) \times M(\vec{r}) \rangle$	_	46
B_k	-21	13
B_q	-21	20
$\mu_{p}'(34.7^{\circ})/\mu_{e}$	_	11
m_{μ}/m_e	—	22
$g_e/2$	_	0
Total systematic		70
Total external parameters	—	25
Totals	622	215

The Run-2/3 result is statistically dominated 70 ppb systematic uncertainty surpasses the proposal goal of 100 ppb!

Total collected statistics

21.9 BNL datasets have been collected in FNAL (proposal – 21 BNL)

Run 4/5/6 statistics is x3 Run-1/2/3

Muon G-2 2023 result

Experiment vs SM prediction

SM prediction for a_{μ} (WP2020)

The uncertainty is dominated by contribution of strong interactions

Hadronic contribution to muon (g-2)

HVP: what do we need to measure

Dispersion relation:

$$a_{\mu}^{had}(LO) = \int_{0}^{\infty} \frac{ds}{s} \frac{1}{\pi} \operatorname{Im} \Pi'(s) \times \int_{\mathfrak{m}^{2}-s}^{\alpha} \frac{1}{q^{2}-s} \prod_{m=1}^{\infty} \frac{ds}{s} \frac{1}{\pi} \operatorname{Im} \Pi'(s) \times \int_{\mathfrak{m}^{2}-s}^{\alpha} \frac{ds}{\pi} K_{\mu}(s)$$
Optical theorem:

$$2 \operatorname{Im} \sqrt{\frac{1}{1-s}} = \int_{0}^{\infty} \frac{ds}{s} \pi K_{\mu}(s) = \left| \sqrt{\sqrt{1-s}} \right|^{2} \prod_{n=1}^{\infty} \frac{s}{4\pi \alpha} \sigma^{0}(e^{+}e^{-} \to \gamma \to hadrons + \cdots)$$
Lets put everything together:

$$a_{\mu}^{had}(LO) = \frac{\alpha^{2}}{3\pi^{2}} \int_{4m_{\pi}^{2}}^{\infty} \frac{ds}{s} R(s) K_{\mu}(s) \qquad R(s) = \frac{\sigma^{0}(e^{+}e^{-} \to \gamma \to hadrons)}{4\pi \alpha^{2}/3s}$$

$$\sigma^{0}(e^{+}e^{-} \to \mu^{+}\mu^{-}) \qquad s = (\text{c.m. energy})^{2}$$

P -3: imp (y-z) 16

In exclusive approach, we calculate a_{μ} integral for each final state and sum them:

$$a_{\mu}^{had}(LO) = \sum_{X=\pi^{0}\gamma,\pi^{+}\pi^{-},\dots} a_{\mu}^{X}(LO) = \sum_{X} \frac{1}{4\pi^{3}} \int \sigma^{0}(e^{+}e^{-} \to X) K_{\mu}(s) ds$$

Contribution of exclusive hadronic cross sections to a_{μ}

Channel	$a_{\mu}^{\rm had,LO} \ [10^{-10}]$
$\pi^0\gamma$	$4.41 \pm 0.06 \pm 0.04 \pm 0.07$
$\eta\gamma$	$0.65\pm 0.02\pm 0.01\pm 0.01$
$\pi^{+}\pi^{-}$	$507.85 \pm 0.83 \pm 3.23 \pm 0.55$
$\pi^+\pi^-\pi^0$	$46.21 \pm 0.40 \pm 1.10 \pm 0.86$
$2\pi^+ 2\pi^-$	$13.68 \pm 0.03 \pm 0.27 \pm 0.14$
$\pi^{+}\pi^{-}2\pi^{0}$	$18.03 \pm 0.06 \pm 0.48 \pm 0.26$
$2\pi^+ 2\pi^- \pi^0 \ (\eta \text{ excl.})$	$0.69 \pm 0.04 \pm 0.06 \pm 0.03$
$\pi^{+}\pi^{-}3\pi^{0} \ (\eta \text{ excl.})$	$0.49 \pm 0.03 \pm 0.09 \pm 0.00$
$3\pi^{+}3\pi^{-}$	$0.11\pm 0.00\pm 0.01\pm 0.00$
$2\pi^+ 2\pi^- 2\pi^0$ (η excl.)	$0.71 \pm 0.06 \pm 0.07 \pm 0.14$
$\pi^+\pi^-4\pi^0$ (η excl., isospin)	$0.08\pm 0.01\pm 0.08\pm 0.00$
$\eta \pi^+ \pi^-$	$1.19\pm 0.02\pm 0.04\pm 0.02$
$\eta\omega$	$0.35\pm 0.01\pm 0.02\pm 0.01$
$\eta \pi^+ \pi^- \pi^0 (\text{non-}\omega, \phi)$	$0.34 \pm 0.03 \pm 0.03 \pm 0.04$
$\eta 2\pi^+ 2\pi^-$	$0.02\pm0.01\pm0.00\pm0.00$
$\omega \eta \pi^0$	$0.06\pm 0.01\pm 0.01\pm 0.00$
$\omega \pi^0 \ (\omega \to \pi^0 \gamma)$	$0.94 \pm 0.01 \pm 0.03 \pm 0.00$
$\omega 2\pi \ (\omega \to \pi^0 \gamma)$	$0.07\pm 0.00\pm 0.00\pm 0.00$
$\omega (\text{non-}3\pi, \pi\gamma, \eta\gamma)$	$0.04\pm 0.00\pm 0.00\pm 0.00$
K^+K^-	$23.08 \pm 0.20 \pm 0.33 \pm 0.21$
$K_S K_L$	$12.82\pm 0.06\pm 0.18\pm 0.15$

The larger the contribution, the better relative precision is required

 $e^+e^- \rightarrow \pi^+\pi^-$ is by far the most challenging and has got the most attention (74% of total hadronic contribution!)

From DHMZ'19

Full value of $a_{\mu}(SM)$

Hadronic contribution: a visual representation

There are several measurements of $\sigma(e^+e^- \rightarrow \pi^+\pi^-)$ with sub-percent systematic accuracy

Measurements of $e^+e^- \rightarrow \pi^+\pi^-$

Tensions in $e^+e^- \rightarrow \pi^+\pi^$ data

Ivan Logashenko (BINP)

There are few-% discrepancies between various sub-% measurements of $\sigma(e^+e^- \rightarrow \pi^+\pi^-)$ Unexplained

WP2020: scale factor for $\Delta a_{\mu}(Had; LO)$

CMD-3 goal: new high statistics low systematics measurement of $\sigma(e^+e^- \rightarrow \pi^+\pi^-)$ via energy scan

Measurement of pion formfactor at CMD-3: impact of muon (g-2)

 $a_{\mu}^{had}(LO; 2\pi, 0.6 < \sqrt{s} < 0.88 \text{ GeV})$

20

CMD-3 measurement of $e^+e^- \rightarrow \pi^+\pi^-$ cross section (2023)

arXiv:2309.12910

Measurement of the pion formfactor with CMD-3 detector and its implication to the hadronic contribution to muon (g-2)

F.V. Ignatov,^{1,2} R.R. Akhmetshin,^{1,2} A.N. Amirkhanov,^{1,2} A.V. Anisenkov,^{1,2} V.M. Aulchenko,^{1,2}
N.S. Bashtovoy,¹ D.E. Berkaev,^{1,2} A.E. Bondar,^{1,2} A.V. Bragin,¹ S.I. Eidelman,^{1,2} D.A. Epifanov,^{1,2}
L.B. Epshteyn,^{1,2,3} A.L. Erofeev,^{1,2} G.V. Fedotovich,^{1,2} A.O. Gorkovonko,^{1,3} F.J. Grancagnolo,⁴
A.A. Grebenuk,^{1,2} S.S. Gribanov,^{1,2} D.N. Grigoriev,^{1,2,3} V.L. Ivanov,^{1,2} S.V. Karpov,¹ A.S. Kasaev,¹
V.F. Kazanin,^{1,2} B.I. Khazin,¹ A.N. Kirpotin,¹ I.A. Koop,^{1,2} A.A. Korobov,^{1,2} A.N. Kozyrev,^{1,2,3}
E.A. Kozyrev,^{1,2} P.P. Krokovny,^{1,2} A.E. Kuzmenko,¹ A.S. Kuzmin,^{1,2} I.B. Logashenko,^{1,2}
P.A. Lukin,^{1,2} A.P. Lysenko,¹ K.Yu. Mikhailov,^{1,2} I.V. Obraztsov,^{1,2} V.S. Okhapkin,¹ A.V. Otboev,¹

E.A. Perevedentsev,^{1,2} Yu.N. Pestov,¹ A.S. Popov,^{1,2} G.P. Razuvaev,^{1,2} Yu.A. Rogovsky,^{1,2} A.A. Ruban,¹
 N.M. Ryskulov,¹ A.E. Ryzhenenkov,^{1,2} A.V. Semenov,^{1,2} A.I. Senchenko,¹ P.Yu. Shatunov,¹
 Yu.M. Shatunov,¹ V.E. Shebalin,^{1,2} D.N. Shemyakin,^{1,2} B.A. Shwartz,^{1,2} D.B. Shwartz,^{1,2}
 A.L. Sibidanov,⁵ E.P. Solodov,^{1,2} A.A. Talyshev,^{1,2} M.V. Timoshenko,¹ V.M. Titov,¹ S.S. Tolmachev,^{1,2}
 A.I. Vorobiov,¹ Yu.V. Yudin,^{1,2} I.M. Zemlyansky,¹ D.S. Zhadan,¹ Yu.M. Zharinov,¹ and A.S. Zubakin¹

(CMD-3 Collaboration)

 ¹Budker Institute of Nuclear Physics, SB RAS, Nonosibirsk, 630090, Russia
 ²Novosibirsk State University, Novosibirsk, 630090, Russia
 ³Novosibirsk State Technical University, Nonosibirsk, 630092, Russia
 ⁴Instituto Nazionale di Fisica Nucleare, Sezione di Lecce, Lecce, Italy
 ⁵University of Victoria, Victoria, BC, Canada V8W 3P6 (Dated: September 25, 2023)

The cross section of the process $e^+e^- \rightarrow \pi^+\pi^-$ has been measured in the center of mass energy range from 0.32 to 1.2 GeV with the CMD-3 detector at the electron-positron collider VEPP-2000. The measurement is based on an integrated luminosity of about 88 pb^{-1} out of which 62 pb^{-1} constitutes a full dataset collected by CMD-3 at center-of-mass energies below 1 GeV. In the dominant region near ρ -resonance a systematic uncertainty of 0.7% has been reached. The impact of presented results on the evaluation of the hadronic contribution to the anomalous magnetic moment of muon is discussed.

Submitted to PRL

arXiv:2302.08834

Measurement of the $e^+e^- \rightarrow \pi^+\pi^-$ cross section from threshold to 1.2 GeV with the CMD-3 detector

F.V. Ignatov^{a,b,1}, R.R. Akhmetshin^{a,b}, A.N. Amirkhanov^{a,b}, A.V. Anisenkov^{a,b},
V.M. Aulchenko^{a,b}, N.S. Bashtovoy^a, D.E. Berkaev^{a,b}, A.E. Bondar^{a,b}, A.V. Bragin^a,
S.I. Eidelman^{a,b}, D.A. Epifanov^{a,b}, L.B. Epshteyn^{a,b,c}, A.L. Erofeev^{a,b}, G.V. Fedotovich^{a,b},
A.O. Gorkovenko^{a,c}, F.J. Grancagnolo^e, A.A. Grebenuk^{a,b}, S.S. Gribanov^{a,b},
D.N. Grigoriev^{a,b,c}, V.L. Ivanov^{a,b}, S.V. Karpov^a, A.S. Kasaev^a, V.F. Kazanin^{a,b},
B.I. Khazin^a, A.N. Kirpotin^a, I.A. Koop^{a,b}, A.A. Korobov^{a,b}, A.N. Kozyrev^{a,c},
E.A. Kozyrev^{a,b}, P.P. Krokovny^{a,b}, A.E. Kuzmenko^a, A.S. Kuzmin^{a,b}, I.B. Logashenko^{a,b},
P.A. Lukin^{a,b}, A.P. Lysenko^a, K.Yu. Mikhailov^{a,b}, I.V. Obraztsov^{a,b}, V.S. Okhapkin^a,
A.V. Otboev^a, E.A. Perevedentsev^{a,b}, Yu.N. Pestov^a, A.S. Popov^{a,b}, G.P. Razuvaev^{b,b},
Yu.A. Rogovsky^{a,b}, A.A. Ruban^a, N.M. Ryskulov^a, A.E. Ryzhenenkov^{a,b},
D.N. Shemyakin^{a,b}, B.A. Shwartz^{a,b}, D.B. Shwartz^{a,b}, A.L. Sibidanov^{a,d}, E.P. Solodov^{a,b},
A.A. Talyshev^{a,b}, M.V. Timoshenko^a, V.M. Titov^a, S.S. Tolmachev^{a,b}, A.I. Vorobiov^a,
I.M. Zemlyansky^a, D.S. Zhadan^a, Yu.M. Zharinov^a, A.S. Zubakin^a, Yu.V. Yudin^{a,b}

^aBudker Institute of Nuclear Physics, SB RAS, Novosibirsk, 630090, Russia ^bNovosibirsk State University, Novosibirsk, 630090, Russia ^cNovosibirsk State Technical University, Novosibirsk, 630092, Russia ^dUniversity of Victoria, Victoria, BC, Canada V8W 3P6 ^eInstituto Nazionale di Fisica Nucleare, Sezione di Lecce, Lecce, Italy

Submitted to PRD

There were 2 dedicated reviews of CMD-3 measurement, organized by Theory Initiative

VEPP-2000 collider (BINP, Novosibirsk)

"Round beam" optics

Energy monitoring by Compton backscattering ($\sigma_{\sqrt{s}}pprox 0.1$ MeV)

VEPP-2000

CMD-3 Detector

*Cryogenic Magnetic Detector

- Magnetic field 1.0-1.3 T
- Drift chamber
 - $\succ \sigma_{R\varphi} \sim 100 \,\mu, \sigma_z \sim 2 3 \,\mathrm{mm}$
- EM calorimeter (LXE, Csl, BGO), 13.5 X₀
 - $\succ \sigma_E/E \sim 3\% 10\%$
 - $\succ \sigma_{\Theta} \sim 5 \text{ mrad}$
- TOF
- Muon counters

Measurement of pion formfactor at CMD-3: impact of muon (g-2)

Collected data

Measurement of $e^+e^- \rightarrow \pi^+\pi^$ at CMD-3

Comparison to other measurements

At first glance, they looks close to each other...

CMD-3 is systematically above previous measurements by ~2-5%

Comparison to other measurements

CMD-3 $e^+e^- \rightarrow \pi^+\pi^-$: contribution to g-2

Experiment vs SM prediction

At the moment, the SM prediction for a_{μ} is unclear (due to hadronic contribution)

Looking deeper

Measurement techniques:

Direct vs ISR

Direct measurement (Energy scan)

~^^^^

Hadrons

At fixed s: $\sigma_{e^+e^- \rightarrow H}(s) \sim N_H/L$ Data is taken at different s

VEPP-2M: CMD-2, SND VEPP-2000: CMD-3, SND2k ISR (Initial State Radiation)

mm

Hadrons

mminn

 $\sigma_{e^+e^- \to H}(s') \sim \frac{dN_{H+\gamma}/ds'}{L \cdot dW/ds'}$ Data is taken at fixed s > s'

KLOE, BABAR, BES-III, CLEO

 $\begin{array}{c} \text{CMD-3} \\ e^+e^- \rightarrow \pi^+\pi^- \end{array}$ analysis

Select events with 2 back-to-back tracks in the detector at large angle: $e^+e^- \to e^+e^-, \mu^+\mu^-, \pi^+\pi^$ and cosmic background Key pieces of analysis to reach high precision:

- $e/\mu/\pi$ separation
- radiative corrections
- fiducial volume
- detection efficiency corrections •

$$\sigma(\pi^+\pi^-) = \frac{\pi\alpha^2}{3s}\beta_\pi^3 \cdot |F_\pi|^2$$

measured

$$e^+e^-
ightarrow e^+e^-$$
, $\mu^+\mu^-$, $\pi^+\pi^-$; cosmic bg

Measurement of pion formfactor at CMD-3: impact of muon (g-2)

Radiative corrections

Classification of $e^+e^- \rightarrow \pi^+\pi^$ measurements

Ехр	Туре	Ν 2π	Syst	Sep	Norm
CMD-3	Direct	3 · 10 ⁷	0.7%	P/E/O	e ⁺ e ⁻ /μ ⁺ μ ⁻
CMD-2	Direct	10 ⁶	0.6-0.8%	P or E	e^+e^-
SND	Direct	$4.5 \cdot 10^{6}$	1.3%	E-NN	e^+e^-
SND2k	Direct	10 ⁶	0.8%	E-NN	e^+e^-
BABAR	ISR		0.5%	Kin	$\mu^+\mu^- + e^+e^-$
KLOE08	ISR		0.9%	E-TOF	e^+e^-
KLOE10	ISR		1.4%	E-TOF	e^+e^-
KLOE12	ISR		0.7%	Kin	$\mu^+\mu^-$

Features of CMD-3 measurement

- World-largest statistics
 - 34 000 000 $e^+e^- \to \pi^+\pi^-$
 - 3700 000 $e^+e^- \to \mu^+\mu^-$
 - 44 000 000 $e^+e^- \to e^+e^-$
- Many built-in cross checks
 - 3 methods for final states indentification
 - 2 methods for angle measurement
 - Measurement of $\sigma(e^+e^- \rightarrow \mu^+\mu^-)$
 - Measurement of charge asymmetry
- Very detailed study of potential systematics

Example of $e^+e^- \rightarrow \pi^+\pi^-$ event

Statistical precision of CMD-3 data

Three methods of separation of $e^+e^-, \mu^+\mu^-, \pi^+\pi^-$ Separation (counting) of e^+e^- , $\mu^+\mu^-$, $\pi^+\pi^-$ events is based on

- a) momenta of two particles
- b) or **energy deposition** in LXe calorimeter

$$-\ln L = -\sum_{bins} n_i \ln \left[\sum_{a=ee,\mu\mu,\pi\pi,bg} N_a f_a(X^+, X^-) \right] + \sum_a N_a$$
$$X = P \text{ or } E$$

 \pm sign reflects energy deposition and momentum of particle with corresponding charge

Independent check by **angular distribution**

Unique feature of CMD-3: three independent methods to measure $N_{\pi\pi}/N_{ee}$!

240 260 2 Momentum, MeV/c,

Three methods agree to 0.2%!

Comparison

Radiative corrections

We want to measure $e^+e^- \rightarrow H$, but these events are accompanied by similar events where photons are emitted by any of the particles.

Have to correct visible cross-section – *radiative corrections*

- MCGPJ (X⁺X⁻) (VEPP-2000)

 real γ (from any particle) + jets along all particles
- BABAYAGA@NLO (e⁺e⁻)
 1 real γ + nγ generated iteratively by emitting one γ at a time
- PHOKHARA Many final states, intended for ISR measurements
 Typical estimated precision – 0.1-0.2%

Radiative processes

Vacuum polarization

CMD-3 $e^+e^- \rightarrow \pi^+\pi^$ analysis: radiative corrections Measurement of $e^+e^- \rightarrow \pi^+\pi^$ requires high precision calculation of radiative corrections.

We use two high-precision MC generators for $e^+e^- \rightarrow e^+e^-$:

- MCGPJ generator (0.2%)
- BaBaYaga@NLO (0.1%)

With high statistics we've observed inconsistencies in tails of distributions, which were traced to particulars of MCGPJ generator

After improvements, tails of $e^+e^$ spectra still differ by few %, which limits the precision to O(0.1%)

NNLO MC generator for $e^+e^- \rightarrow e^+e^$ is needed for higher precision

41

Measurement of polar angle

Θ angle is measured by drift chamber via charge division

Two detector systems with strips readout, LXe calorimeter and Z-chamber, are used for precise calibration and monitoring of DC We need to precisely know the fiducial volume (Θ_0 cut).

$$|F_{\pi}|^{2} = \left(\frac{N_{\pi\pi}}{N_{ee}} - \Delta_{bg}\right) \cdot \frac{\sigma_{ee}^{0} \cdot (1 + \delta_{ee}) \cdot \varepsilon_{ee}}{\sigma_{\pi\pi}^{0} \cdot (1 + \delta_{\pi\pi}) \cdot \varepsilon_{\pi\pi}}$$

Factor 10 smaller compared to CMD-2, SND2k!

Charge asymmetry in $e^+e^- \rightarrow \pi^+\pi^-$ Charge asymmetry in $e^+ e^- \rightarrow \pi^+ \pi^-$ is due to interference between ISR/FSR and between one- and two-photon exchange

$$A = \left(N_{\Theta < \pi/2}^{\pi} - N_{\Theta > \pi/2}^{\pi} \right) / N$$

0.006

0.004

⁸_≟0.002

-0.002 -0.004 -0.006

The theoretical model by Lee, Ignatov, PLB 833 (2022) 137283 (GVDM) describes well the CMD-3 data

Recent calculation in dispersive formalism Colangelo et al., JHEP 08 (2022) 295 confirms the effect.

 $e^+e^- \rightarrow \mu^+\mu^-$ events are identified as a by-product of analysis, which allows to measure $\sigma(e^+e^- \rightarrow \mu^+\mu^-)$ and compare it to QED prediction

Powerful cross-check of $\sigma(e^+e^- \rightarrow \pi^+\pi^-)$ measurement! All ingredients are tested: event separation, detection efficiencies, radiative corrections.

of $e^+e^- \rightarrow \mu^+\mu^-$

Measurement

Comparison of data taking seasons

Results based on 2013, 2018 and 2020 data only agree to ~0.1%! The detector performance and run conditions were significantly different for these runs.

What's next

Experiment vs SM prediction (2024)

At the moment, the SM prediction for a_{μ} is unclear (due to hadronic contribution)

Question #1

What to do with CMD-3?

We cannot simply average CMD-3 measurement with other measurements

CMD-3 result is incompatible with previous measurements

- If CMD-3 is right, other are wrong
- If previous measurements are right, CMD-3 is wrong
- Or they all are wrong

CMD-3: what we could do wrong? CMD-3 measurement has many internal cross-checks which doesn't leave much space for unknowns.

 Is there problem with angle measurement (fiducial volume)? Unlikely: two systems are used; there is measurement of asymmetry; angle distribution agrees with simulation

• Is there problem with RC calculation?

Unlikely as a source of discrepancy: CMD-2 and SND use the same code, and measurement of asymmetry agrees with RC MC generator. But there could be potential systematic shift in RC common for CMD-X/SND (e.g. for pions due to limitations of sQED).

- Is there problem with event separation? Unlikely: three methods agree (CMD-3 is the first measurement with several methods)
- Is there problem with trigger or detection efficiencies? Unlikely: should lead to shift of $\sigma(\mu\mu)$.
- Stupid mistake?

Always possible, but we've done the whole analysis on MC data

• Unaccounted physical background which mimics $e^+e^- \rightarrow \pi^+\pi^-$? Possible, but we accounted for all known backgrounds from $e^+e^$ annihilation. Something else? Beam/residual gas interactions? CMD-2 and CMD-3 are very different measurements Similarities:

- Two subsystems, endcap calorimeter (not used) and Zchamber (only used in 2013 CMD-3 data)
- Analysis strategy

Differences:

- Major detector systems (DC and calorimeter), electronics
- DC resolution
- Statistics (CMD-3 x30)
- Analysis implementation
- ...

CMD-2 and CMD-3 are very different realization of the same-type measurement

Prospects for SM prediction Discrepancies in $e^+e^- \rightarrow H$ data make the SM prediction "blinded"

As of today, we don't have established estimate of $a_{\mu}(SM)$

There are significant efforts to understand the discrepancies and to obtain additional new $e^+e^- \rightarrow H$ data:

- SND has the same amount of data collected as CMD-3, analysis is in progress
- BABAR is making reanalysis of old data using new approach (angular analysis)
- BELLE-II plans to do ISR measurement of $e^+e^- \rightarrow H$ cross sections
- KLOE-2 started analysis of data not analyzed before

There is dedicated experiment, Muone, being prepared at CERN to measure hadronic contribution via $e\mu$ scattering

There is fast progress in lattice calculations

There are good chances to improve precision of SM prediction in coming years

Question #2

Accuracy of hadronic contribution

Possible scenario

 $a_{\mu}(BSM) \pm \Delta a_{\mu}(BSM) = \left[a_{\mu}(exp) - a_{\mu}(SM)\right] \pm \sqrt{\Delta a_{\mu}(exp)^{2} + \Delta a_{\mu}(SM)^{2}}$

 $\Delta a_{\mu}(BSM)$ determines the power of a_{μ} as test of theoretical models

Reduction of $\Delta a_{\mu}(BSM)$ is of great importance for flavor physics

FNAL expected precision of 140 ppb corresponds to $\sim 0.25\%$ of $a_{\mu}^{had,LO}$

Hadronic contribution: $a_{\mu}(had) = \int \sigma_{e^+e^- \to H}(s) K(s) ds$

Need to measure $\sigma(e^+e^- \rightarrow H)$ to ~0.2% in order to match FNAL precision.

Final state	Required precision	Precision today
$\pi^+\pi^-$	0.2%	0.8%
$\pi^+\pi^-\pi^0$	1.0%	1.5-3%
$\pi^+\pi^-\pi^+\pi^-$	0.8%	2-3%
$\pi^+\pi^-\pi^0\pi^0$	2.5%	5%
K^+K^-	0.6%	2%
$K_S K_L$	0.7%	2%

CMD-3 plans

The CMD-3 measurement is systematically limited – detector upgrade.

Detector upgrades under discussions: new drift chamber, new Z-chamber at inner and outer radii (probably, integrated with DC),...

The goal is to reach ~0.3-0.4% in $\sigma(e^+e^- \rightarrow \pi^+\pi^-)$

Key improvements:

- Separation of final states (PID)
- Angle measurement
- Nuclear interactions of pions

The precision critically depends on development on new generation of MC generators for radiative corrections

VEPP-6

We are considering a new collider at BINP (VEPP-6)

> e^+e^- collider

- Beam energy from <0.5 to 1.6 GeV (J/ψ) (2.2 GeV)
- Luminosity $\mathcal{L} \approx 10^{34} \text{ cm}^{-2} \text{c}^{-1}$ @ 1.6 GeV
- > General purpose detector
 - Tracking
 - Calorimetry
 - Particle ID
- Physics
 - Measurement of R (cross sections $e^+e^- \rightarrow H$)
 - \circ J/ψ decays
 - Baryon thresholds
 - o τ , open charm
 - 0 ...

VEPP-6 should be capable to measure R to necessary precision

500 M \ni B: 1 \div 3 \cdot 10³² cm⁻²c⁻¹ \approx 1 \cdot DAPHNE 1000 M \ni B: 1 \div 2 \cdot 10³³ cm⁻²c⁻¹ \approx 10 \cdot VEPP-2000 1550 M \ni B: 0.5 \div 1 \cdot 10³⁴ cm⁻²c⁻¹ \approx 30 \cdot BEPCII MUonE @CERN Dedicated experiment to measure hadronic contribution in t-channel.

$$a_{\mu}^{HLO} = \frac{\alpha_0}{\pi} \int_0^1 dx (1-x) \Delta \alpha_{had}[t(x)]$$

Lautrup, Peterman, De Rafael, Phys. Rep. C3 (1972), 193

Measured: angular distribution of μe scattering; $4 \cdot 10^{12}$ events!

Now: proof-of-concept data taking; final result after LHC LS3 (2029-)

At the end of 2023

Conclusion

Conclusion

