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Theory of General Relativity and GW Detectors

1993 r. Nobel Prize (Russell Hulse and Joseph Taylor) for discovery of GW via
change of frequency of double pulsar rotation.

Flying pieces of space-time curvature
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Idea of laser GW antenna

M.E. Hertsenshtein and V.l. Pustovoit, Zh.Eks.Ter.Fiz. 43, 605

(1962)
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JlazepHasi rpaBUTaLMOHHAs aHTEHHa

Cxema n Bug,

1992 r. — Kip Thorne, Ronald Driver (CIT) and Rainer Weiss (MIT) npeanoxunn
LIGO.
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© Scale of displacements
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Scale of displacements

From Earth to atom

1.3 -
13000 km
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Atoms on surface

Surface fluctuations (rough estimate)

Fy | Ommanusayue At room temperature Ax ~ 10719 m.
On spot 10 cm x10 cm — about N =
10*8 atoms.

Surface fluctuations (“breathing”)

Ax

Wik 107Ym (1)

AX ~

Mpumantetiue

More accurate calculations

LIGO: mean position of spot D = 10 cm fluctuates for 7 ~ 0.01 ¢
AXiherm ~ 10719 m

It is about & 10 billions (!) times smaller than atom,

or B 10 thousands (!) times smaller than nucleus

Is it possible to measure?

S.P. Vyatchanin (Moscow St. Univversity) GW Detectors April 2024 8 /29



What displacement we can measure?

V.B. Braginsky, V.I. Panov and V.D. Popelnyuk, 1981

Superconducting capacity meter, gap 4 microns:

AX ~ 1071 m, gap 4 microns, for 7 =10c

“Initial” LIGO, 2011

Laser beam measures coordinate averaged over spot D = 6 cm

AX ~4x107® m, distance L =4 km, for time 7 ~ 0.01 c

v

Advanced LIGO, 2023

AX ~0.5x10 " m, distance L =4 km, for time 7 =~ 0.01 c (!

e
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© Laser GW detectors — what is now?

e
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. Observatory Network (IGWN)

§  1n operation

©  Under construction 9 GEO
U
9
LHO Virgo
v
@ KAGRA
LLO
Qo
LIGO India

S.P. Vyatchanin (Moscow St. Univversity) GW Detectors April 2024 10/ 29



Advanced LIGO A+

A+ status for O4 (March 2023)

v 04 A+ systems delivered, installed, tested;

commissioning in progress
v Improved squeezed light injection
v OPO Upgrade
v High-T Faraday isolators
v Adaptive mode matching
v Frequency-Dependent Squeezing (FDS)
v Squeezed light injection, Civil + Vacuum
v Filter cavity optics, seismic isolation, suspensions, baffles, sensing,
control/data system
v Civil construction
v Vacuum system expa nsion (excerpted from M. Zucker NSF talk)

Now O4 operates.
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Current sensitivity of Advanced LIGO A+

Sensitivity and squeezing improvement

Frequency Dependent Squeezing Achieved in Lousiana and Hanford
nterferometers
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Advanced LIGO A+: schedule for the period 2024 — 2028

Expect to be observing 50% of the time

| .. and back again! ER16 starts next week

I

L
Updated - O1 02 =03 - 04 05
2024-02-14
80 100 100-140 150 160+ 240-325
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Past and future Observation Runs

LIGO-Virgo-KAGRA anticipate observing
to dovetail with next generation facilities
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O4a Summary

1368975618-1389456018 Home Summary Analysi ~ Range Segments Time accol

Single-interferometer observing segments Multi-interferometer observing segments
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O4a Summary (cont.)

candidates

04 Significant Detection Candidates: 81 {92 Total - 11 Retracted)
Q4 Low Significance Detection Candidates: 1610 (Total)

Show All Public Events

Page 1 of 7. next last »
Significant alerts: SORT: EVENTID(AD) T
o False alarm rate less
than ~1/month

Source (P

o ~1BBH per 3 days om0 oo Creer 9
$240109a BEH (99%) Yes ; Query 1per 4.3136 years
actual 05:04:31 UTC Notices | VOE
o ~1BNS per 3-6
: N Creor
months predICted 52401070 BBH (97%), Terrestriol (3%) Yes it Query 18411 per yeor
Other alerts: CEEISUTC  tices| VOE 4
o Not significant and J——
false alarm rate 1655 iur o S @
than few per day. 1843TIUTE s voE i

BBH — 81 events. BNS — 0 events.

B
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A+ Status and Plans

The recommends

pursuing a series of upgrades for the LIGO

detectors collectively known as A# - -
Design parameter A+ A* CE
03LLO
04LLO Arm length tkm —# 4km 20 km, 40 km
— A+ design
T -:: Arm power 750 kW=l .5 MW 1.5 MW
N 03
(A+ coatings)
E Lo Squeezing level 6dB —¢ 10dB 10dB
.g o3 Mass of test-mass 10kg =& 100 ke 320 ke
a Test-mass coatings A+ —%A+/2 A+
Suspension length 1.6m = 1.6m Im
A
102 10° Newtonian suppression 0db =% 6db 20 db
Frequency [Hz)

We are aiming to have a mature conceptual

design and costing to be able to submit a See Monday afternoon SUS/SEI session talk by Edgard Bonilla

proposal by mid-2025 frame.
i
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@ Standard Quantum Limit (SQL) and how to surpass it
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Noise budget: L1GO Louisiana, 2021

L1 DARM Noise Budget, February 2021
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Coherent state of quantum oscillator
Zero state |0)

VB = [ JEA =1 s =" |

Cohherent state «)

«a — mean amplitude, 2%
no = a®> — mean gaunta number

hw
<g>:h¢d0a2—|—7, \/TT
An=/no, Ap= NS
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Standard Quantum Limit (SQ

Coherent state of light

Uncertainty of phase ¢ n quanta number n in laser pulse (N — mean quanta
number):

An=+VN, Aqﬁzﬁ

SQL — V.B. Braginsky idea (1968)

Reason of SQL?:
continious measurement and
Heisenberg principle:

AXeas APsa > h/2.

2V.B. Braginsky, Sov. Phys. JETP, 26, 831, 1968. )
V.B. Braginsky and F.Ya. Khalili, Quantum measurement, 1992.
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Simple optic meter

2kdXmeas = A, k= %
1
Ap=——
O = oUN
1
= 0 Xmeas .
4kv/'N

Measurement error — phase fluctuations

W, W

Back action

Back action: amplitude fluctuations (fluctuations of light pressure force)

§Pga = 21ikV/N,

5PBA7'

0Xga =
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Total error of coordinate
1 12 (ol -]’
Axioral = 1/ 6X2 s + 6X3A = [ } +
b A7\ LakvN m

ht m
AXeotal|min = AXsqrL = \/;’ Novt = grzr
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How to surpass S

Quantum Non-Demolition Measurement (QND)

To measure integral of movement — back action cancellation?®.

For example, invariant for free mass — speed (momentum).
But it should be direct measurement — difficulty.

2V.B. Braginsky and F.Ya. Khalili, Quantum measurement, Cambridge Univ. Press, 1992

Not QND measurement

@ Quantum variational measurement
@ Squeezed input
o Optical rigidity

Realization — more easy.
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© Quantum variational measurement

e
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Quantum variational measurement

What will be at N > Ny ?

SQL — at N = Ngpt.

At N > Nype quasi-classically:

LP force is larger in point A, it transforms to A’
In B LP force is smaller, it it transforms to B’
Phase disturbance.

It means — squeezing

= we have to measure squeezed quadrature
SQL can be surpassed”

aS.P. Vyatchanin, ZhETF, 109, 1873, 1996
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Quantum variational measurement (cont.

Example: Squeezing in nonlinear media

A ---w_ A

Refraction index n depends| 4, < \

on intensity P: . [

n=no(l—aP) (2) 5 B
squeezed
Input field is in coherent
state,

Input field q1 Output field ¢
output one — squeezed.

Quasi-classical explanation:
point A moves slightly faster, point B — slower.

e
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@ Squeezed input

e
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|dea of squeezed input

Phase diagrams

Figure: Left: input wave is in coherent state (dashed), phase of output wave is disturbed
due to LP pressure (A — A, B — B/). Right: input wave is in squeezed state (dashed),
initial squeezing is chosen in optimal way so that after reflection — phase squeezing.

<
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Frequency dependence

Squeezing should depends on spectral frequency

Recall
Fs(©)
Q) =8{dy(Q) - Kd, b — /28K ==L,
96(@) = 5 { (@) K s } — /25K
2hrowi A2 0 +iQ
0:(Q) = B ds(Q), |K = b= .
®) &) mL20? |5 — iQ|? T iR

Power parameter K defines
the value of ponderomotive
squeezing. It depends on fre-
quency (K ~ 1/Q2).
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Frequency dependent squeezing

Experimental difficulties

o Relatively easy to obtain squeezing on high frequencies in range 100 kHz and
larger. For GW detectors we need squeezing in band 10 Hz — 1 kHz.

o Frequency dependent squeezing on low frequencies — difficult task.

@ Loss factor: squeezing is very vulnerable to optical losses

(“problem of waist”).
b

g a—0 —— »

aoi €€y

by =Recas+ee;=R.e"azvac +¢€ €a,

by = Rcag +€ey = R e "agyac + €64,

Plan and reality

A+ LIGO plan: to inject 12 dB squeezing.
Now — 5.4 dB frequency dependent squeezing is realized (!)
5dB = Aguac/Agsq ~ 1.8, 10dB = Aguac/Agsqg ~ 3.1
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@ Conclusion
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Conclusion

Accuracy of GW detectors are about 160 Mp.
During O4a about 81 BBH (binary black holes) coalescences are detected.
No BNS (binary neutron stars) coalescences are detected.

Accuracy of GW detectors are close to SQL
= surpassing SQL is an actual problem.

Practical methods to overcome SQL for free mass

e Quantum variational measurement
e Squeezing input

e
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Long Live Gravitational Waves!
Long Live Quantum measurements!

Thank you for attention!
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