Методы определения центральности в эксперименте BM@N

А.Деманов¹, И.Сегаль¹, А.Тараненко^{1,2}, М.Мамаев^{1,3}, П.Парфенов^{1,3}, Д.Идрисов¹

¹НИЯУ МИФИ, Москва ²ОИЯИ, Дубна ³ИЯИ РАН, Троицк

BM@

1 апреля, 2024 Научная сессия секции ядерной физики ОФН РАН

Motivation for centrality determination

• Evolution of matter produced in heavy-ion collisions depends on its initial geometry

 Goal of centrality determination: <u>map (on average) the collision geometry parameters</u> <u>to experimental observables (centrality estimators)</u>

 Centrality class S₁-S₂: group of events corresponding to a given fraction (in %) of the total cross section:

$$C_S = \frac{1}{\sigma_{inel}^{AA}} \int_{S_1}^{S_2} \frac{d\sigma}{dS} dS$$

MC Glauber model

MC Glauber model provides a description of the initial state of a heavy-ion collision

- Independent straight line trajectories of the nucleons
- A-A collision is treated as a sequence of independent binary NN collisions
- Monte-Carlo sampling of nucleons position for individual collisions

Main model parameters

Centrality determination

HADES, Au+Au 1.23A GeV

Eur. Phys. J. A (2018) 54: 85

Centrality	b_{\min}	$b_{\rm max}$	$\langle b \rangle$
Classes			
0-5%	0.00	3.30	2.20
5 - 10 %	3.30	4.70	4.04
10 - 15 %	4.70	5.70	5.22
15 - 20 %	5.70	6.60	6.16
20 - 25 %	6.60	7.40	7.01
25 - 30 %	7.40	8.10	7.75
30 - 35 %	8.10	8.70	8.40
35 - 40 %	8.70	9.30	9.00
40 - 45 %	9.30	9.90	9.60
45 - 50 %	9.90	10.40	10.15
50 - 55 %	10.40	10.90	10.65
55 - 60 %	10.90	11.40	11.15

STAR, Au+Au, BES

	10 ⁻³	(a) 7.7 GeV	(b) 11.5 GeV	(c) 19.6 GeV	Phys.	Rev. C 86, (054908 (2012)
(10 ⁻⁴ 10 ⁻⁵				Centrality (%)	$\langle N_{\rm part} \rangle$	$\langle N_{\rm coll} \rangle$
dN /dN ^{aw} 10 10 10 10	10 ⁻⁶ 10 ⁻⁷				0-5%	337 ± 2	774 ± 28
	10 ⁻⁸	(d) 27 GeV	(e) 39 GeV		5-10% 10-20%	290 ± 6 226 ± 8	629 ± 20 450 ± 22
V)(10 ⁻³			— Data — Glauber MC	20-30% 30-40%	160 ± 10 110 ± 11	283 ± 24 171 ± 23
	10⁻⁵ 10⁻ ⁶		10-40%	40-50% 50-60%	72 ± 10 45 ± 9	96 ± 19 52 ± 13	
	10 ⁻⁷ 10 ⁻⁸				60-70% 70-80%	26 ± 7 14 ± 4	25 ± 9 12 ± 5
	(0 200 400	0 200 400 0 N ^{raw} _{ch}	0 200 400			

Centrality determination based on multiplicity provides with:

impact parameter (b)

Npart

number of participating nucleons (N_{part})

Similar centrality estimator is needed for comparisons with STAR, HADES, etc. 4

Model dependence of b, N_{part}

BM@N subsystems for centrality determination

SImulation:

- Xe-Cs @4.0A GeV
- GEANT4 transport

<u>Data:</u>

- run8 Xe-CsI @3.8A GeV
- Pile-up cut
- More than 1 track in vertex reconstruction

<u>Subsystems</u>

- Participants: Tracking system GEM+FSD
- Spectators: FHCal, Forward Quartz Hodoscope (FQH)

Centrality determination based on Monte-Carlo sampling of produced particles

MC-Glauber fit result Xe-Cs @ 4.0 AGeV

- Good agreement between Model data and fit
- Impact parameter distributions in different centrality classes reproduces ones from DCM-QGSM-SMM

The Bayesian inversion method (Γ-fit): main assumptions

 $\mbox{.}$ Relation between multiplicity N_{ch} and impact parameter b is defined by the fluctuation kernel:

impact parameter

Five fit parameters

$$N_{knee}, \theta, a_j$$

Ν

10

Reconstruction of b

- Normalized multiplicity distribution $P(N_{ch})$

$$P(N_{ch}) = \int_0^1 P(N_{ch}|c_b) dc_b$$

• Find probability of *b* for fixed range of N_{ch} using Bayes' theorem:

$$P(b|n_1 < N_{ch} < n_2) = P(b) \frac{\int_{n_1}^{n_2} P(N_{ch}|b) dN_{ch}}{\int_{n_1}^{n_2} P(N_{ch}) dN_{ch}}$$

The Bayesian inversion method consists of 2 steps:

Fit normalized multiplicity distribution with P(N_{ch})
 Construct P(b|N_{ch}) using Bayes' theorem with parameters from the fit

R. Rogly, G. Giacalone and J. Y. Ollitrault, Phys.Rev. C98 (2018) no.2, 024902 Implementation for MPD and BM@N by D. Idrisov: <u>https://github.com/Dim23/GammaFit</u> Example of application in MPD: **P. Parfenov et al., Particles 4 (2021) 2, 275-287**

Γ-fit result Xe-Cs @ 4.0 AGeV

- Good agreement between Model data and fit
- Impact parameter distributions in different centrality classes reproduces ones from DCM-QGSM-SMM

Result of centrality determination at Xe-CsI @ 3.8 AGeV

- Centrality determination methods were applied on experimental Xe-CsI data
- Good agreement between data and fit for both methods
- New centrality classes is used in analysis (see talk by M.Mamaev)

Comparison between impact parameter distributions

Possibilities of spectators fragments as estimators

- Physical threshold of switching between estimators could be Hodoscope signal E_{Hodo}=0.04 (corresponding to b~6fm)
- FHCal energy distribution improved and has more linear correlation with impact parameter (for range E_{Hodo} < 0.04)

15

There is good correlation between Hodoscope charge and impact parameter (for range E_{Hodo} > 0.04)

Possibilities of spectators fragments as estimators

PSD3

PSD2

Summary

- Methods of centrality determination are presented:
 - MC Glauber for multiplicity of produced particles
 - The Bayesian inversion method for multiplicity
- Relation between impact parameter and centrality classes is extracted
- Possibilities of using of forward detectors for centrality determination was studied

Work in progress:

• Combination of forward detectors can be used to avoid effects due to the beam hole in FHCal

Backup

BC1 Integral cut improvement

- Suggestions by <u>S.Sedykh</u>:
- New cut saves all events where only one collision occurs

 Difference: 23% → 43% of all events

Additional graphic cut

- There are some additional structures of events with unusual behaviour which may
 affect physical results
- Those events can be declined using graphic cut

Additional graphic cut

results from STAR by K.Okubo

 In the STAR's case number of tracks matched with TOF were used to reject events with unusual behaviour

Additional graphic cut

• Graphic cut was performed to throw out all events with unusual behaviour:

 $STS_{max}(N_{tracks}) = 4.6e - 05^{*}N^{3} - 0.052^{*}N^{2} + 19.4^{*}N + 188 \quad (mean + 3\sigma)$ $STS_{min}(N_{tracks}) = -9.6e - 05^{*}N^{3} + 0.033^{*}N^{2} + 4.8^{*}N - 74 \quad (mean - 3\sigma)$

• Difference: $23\% \rightarrow 41\%$ of all events

Future improvements

- Calibrate BC1 Amplitude over all runs to improve FD vs BC1 Integrals correlation
- Use areas of each peak instead of line on this correlation
- Finally, we should adjust before/after protection window for physics analysis

Centrality determination

<u>E</u>100

90

80

70

60 50 40

30

20

10

4

do/db [

Centrality determination based on multiplicity provides with:

- impact parameter (b)
- number of participating nucleons (N_{part})

Similar centrality estimator is needed for comparisons with STAR, HADES, etc.

STAR, Au+Au, BES

HADES, Au+Au 1.23A GeV

Centrality Classes	<i>b</i> _{min}	b _{max}	$\langle b \rangle$	$\langle N_{\rm part} \rangle$	RMS(N _{part})
0-5%	0.00	3.30	2.20	331.3	19.4
5-10 %	3.30	4.70	4.04	275.6	16.4
10-15 %	4.70	5.70	5.22	231.9	13.7
15 - 20 %	5.70	6.60	6.16	195.5	13.0
20-25 %	6.60	7.40	7.01	163.3	12.2
25 - 30 %	7.40	8.10	7.75	135.8	11.4
30 - 35 %	8.10	8.70	8.40	113.2	10.6
35 - 40 %	8.70	9.30	9.00	93.7	10.5
40-45 %	9.30	9.90	9.60	75.5	10.1
45 - 50 %	9.90	10.40	10.15	60.4	9.4
50 - 55 %	10.40	10.90	10.65	48.0	8.9
55 - 60 %	10.90	11.40	11.15	36.9	8.3

Eur. Phys. J. A (2018) 54: 85

Simplified MC sampling for hadron calorimeters

see for more details Segal I. Particles. 2023; 6(2):568-579.

- Gauss distribution can not reproduce energy distribution in the most central collisions
- Possible improvements are now under investigation

How to reconstruct "real" energy of spectators?

by N.Karpushkin at 10th BM@N CM

- In the NA61/SHINE experiment the peak of PSD energy distribution is located at E_{beam}* A_{Pb}~2700 GeV
- In our case we don't see range of energies in FHCal corresponding to collision energy and colliding system
- Is it possible to reconstruct "real" energy of spectators using E_{den}?
- If so is there any way to do so for Hodoscope?

Overview of centrality determination methods

Method type	MC-Glauber based	Model independent (e.g. Г-fit method)	Based on ML
Used in	STAR, ALICE, HADES, CBM, MPD, etc.	ALICE, CMS, ATLAS J. Y. Ollitrault et al. Phys.Rev. C 98 (2018) 024902	Becoming popular Fupeng L. et al. J.Phys.G 47 (2020) 11, 115104
Advantages	Commonly used, well established procedure	Universality due to model independence	The most modern and fast methods
Disadvantages	MC-Glauber model provides non-realistic N _{part} simulations at low energies M. O. Kuttan et al. e-Print: 2303.07919 [hep-ph]	In strong connection with σ_{inel} which dependence on energy is not well studied at low energies (same problem for MC-Glauber based methods)	There no way to control the physicality of the methods

Comparison with older results (E_{kin} =3.8 GeV)

- Glauber fit improved in comparison with previous results
- CCT2 has good efficiency up to 60% centrality
- New centrality classes is used in analysis (see talk by M.Mamaev)

Comparison with older results (E_{kin} =3.8 GeV)

- For the new cuts fit also a little bit better
- These classes can be used during physics analysis
- Trigger efficiency at the peripheral events should be taken into account

Comparison between impact parameter distributions

- For Γ -fit all centrality classes are comparable
- **F-fit and MC-Glauber fit are now in more agreement with each other**

Estimation of trigger efficiency

- Results do not agree with Nikolay's results from the last CM
- Looks like CCT2 trigger has good efficiency for the events with up to 60% centrality

NBD at different values of k

SMM description of the ALADIN's fragmentation data

A.S. Botvina et al. NPA 584 (1995) 737

R.Ogul et al. PRC 83, 024608 (2011)

Gaussian approximation for fragments energy

- Distribution of mass numbers of spectators fragments could be fitted by Gauss distribution
- Mean values equal to product of beam energy and fragment's mass
- Total spectators energy distribution is also Gauss:

$$P(E_{tot};\mu_{tot},k_{tot}) \approx \prod_{i=1}^{N_{frag}} P(E_{frag}^{i};\mu_{frag}^{i},k_{frag}^{i}) \approx \prod_{i=1}^{N_{spec}} P(E_{spec}^{j};\mu_{spec},k_{spec})$$

 Measured energy distribution follows convolution of two Gauss distributions (sum of fragments energy and detector response)

Simplified MC sampling for hadron calorimeters

Segal I. Particles. 2023; 6(2):568-579.

- Shapes of energy and impact parameter distributions are similar
- Width of distribution for energy is larger than for multiplicity
- Possible decrease of width will be study

Possibilities of spectators fragments as estimators

- Physical threshold of switching between estimators could be Hodoscope signal E_{Hodo}=0.04 (corresponding to b~6fm)
- FHCal energy distribution improved and has more linear correlation with impact parameter (for range E_{Hodo} < 0.04)
- There is good correlation between Hodoscope charge and impact parameter (for range E_{Hodo} > 0.04)