### Измерения анизотропных коллективных потоков от LHC до NICA

Аркадий Тараненко (НИЯУ МИФИ, ЛФВЭ ОИЯИ)



Научная сессия секции ядерной физики ОФН РАН, посвященная 300-летию Российской Академии Наук, ОИЯИ, 1-5 апреля 2024

Работа поддержана Министерством науки и высшего образования РФ, проект "Новые явления в физике элементарных частиц и ранней Вселенной" № FSWU-2023-0073

### Azimuthal anisotropy of particles at HIC 1989-2024



Sergei Voloshin, Y. Zhang, Z. Phys. C70,(1996), 665

$$\frac{dN}{d(\varphi - \Psi_{RP})} = \frac{N_0}{2\pi} (1 + 2v_1 \cos(\varphi - \Psi_{RP}) + 2v_2 \cos(2(\varphi - \Psi_{RP})) + \dots)$$

□ The sinus terms are skipped by symmetry arguments □ From the properties of Fourier's series one has  $v_n = \langle \cos[n(\varphi - \Psi_{RP})] \rangle$ 

 $\Box$  Fourier coefficients  $V_n$  quantify anisotropic flow:

 $v_1$  is directed flow,  $v_2$  is elliptic flow,  $v_3$  is triangular flow, etc.

Term "flow" does not mean necessarily "hydro" flow – used only to emphasize the collective behavior of particles in event or multiparticle azimuthal correlation

### Anisotropic Flow at RHIC-LHC



# Initial eccentricity (and its attendant fluctuations) $\epsilon_n$ drive momentum anisotropy $v_n$ with specific viscous modulation





### State-of-the-art modeling of HI collisions

Data-model comparison via Bayesian inference to optimize constraining power.



Detailed temperature dependence of viscosity!



Jetscape PRL.126.242301 Trjactum PRL.126.202301

#### Major uncertainty: initial condition and pre-hydro phase

8



# Anisotropic Flow at RHIC/LHC is acoustic

- ν<sub>n</sub> measurements are sensitive to system shape (ε<sub>n</sub>), system size (RT) and transport coefficients ( $\frac{\eta}{s}, \frac{\zeta}{s}, ...$ ).
   arXiv:1305.3341
- Acoustic ansatz

arXiv:1305.3341 Roy A. Lacey, et al.

- ✓ Sound attenuation in the viscous matter reduces the magnitude of  $v_n$ .
- Anisotropic flow attenuation,

$$\frac{v_n}{\varepsilon_n} \propto e^{-\beta n^2}, \ \beta \propto \frac{\eta}{s} \frac{1}{RT}$$

> From macroscopic entropy considerations  $S \sim (RT)^3 \propto \frac{dN}{d\eta}$ 

$$ln\left(\frac{\nu_n}{\epsilon_n}\right) \propto A \frac{\eta}{s} \left(\frac{dN}{d\eta}\right)^{\frac{-1}{3}}$$

$$\bigotimes_{Au + Au} \qquad \bigotimes_{U+U} \qquad \bigotimes_{Cu + Au} \qquad \bigotimes_{Cu + Cu} \qquad \bigotimes_{d+Au} \qquad \bigoplus_{p + Au}$$

$$Scaling expected For similar \frac{\eta}{s} and \frac{dN}{d\eta}$$



✓ Characteristic 1/(RT) viscous damping validated
 ✓ Clear pattern for n<sup>2</sup> dependence of viscous attenuation
 ✓ Important constraint for ŋ/s & ζ/s



STAR, Phys. Rev. Lett. 122 (2019) 172301



✓ Characteristic 1/(RT) viscous damping validated
 ✓ Viscous damping supersedes the influence of eccentricity for "small" systems
 ✓ Similar slopes imply similar <sup>η</sup>/<sub>s</sub>.

#### Beam energy dependence of V<sub>n</sub>

- Anisotropic flow attenuation:
- From macroscopic entropy considerations:

 $S \sim (RT)^3 \sim \langle N_{Ch} \rangle$  then  $RT \sim \langle N_{Ch} \rangle^{1/3}$  $\ln \left( \frac{v_n}{\varepsilon_n} \right) \propto - \left( \frac{\eta}{s} \right) \langle N_{Ch} \rangle^{-1/3}$ 

Using two different harmonics :

$$\begin{bmatrix} \ln\left(\frac{\mathbf{v}_{n}^{1/n}}{v_{2}^{1/2}}\right) + \ln\left(\frac{\varepsilon_{2}^{1/2}}{\varepsilon_{n}^{1/n}}\right) \end{bmatrix} \langle \mathbf{N}_{Ch} \rangle^{1/3} \propto -\mathbf{A}\left(\frac{\eta}{s}\right)$$
$$\beta'' = \ln\left(\frac{\mathbf{v}_{n}^{1/n}}{v_{2}^{1/2}}\right) \langle \mathbf{N}_{Ch} \rangle^{1/3} \propto -\mathbf{A}\left(\frac{\eta}{s}\right)$$

$$v_{n} \propto k \varepsilon_{n}, \qquad k = e^{-\beta n^{2}}$$

$$\frac{v_{n}}{\varepsilon_{n}} \propto e^{-\beta n^{2}}, \qquad \beta \propto \frac{\eta}{s} \frac{1}{R T}$$

$$\int_{\mathbb{Z}^{5}}^{1.9} 1.8$$

$$\int_{1.7}^{1.9} \frac{1}{\varepsilon_{n}} = \frac{1}{10} + \frac{$$

- 2

19

#### Beam energy dependence of $V_n$

$$\beta'' = \ln\left(\frac{v_n^{1/n}}{v_2^{1/2}}\right) \langle N_{Ch} \rangle^{1/3} \propto -A\left(\frac{\eta}{s}\right)$$
 A: is constant



 $V_n$  shows a monotonic increase with beam energy. The viscous coefficient, which encodes the transport coefficient ( $\eta/s$ ), indicates a non-monotonic behavior as a function of beam energy.

#### Anisotropic flow in Au+Au collisions at Nuclotron-NICA M. AGAINA CTAR S. Lett. B 827, 137003 (2022) 0.20 0.06 n] IAM/MF $dv_1/dy \Big|_{y=0}$ 0.4 Au+Au Collisions at RHIC 0.15 AM/MF w/o spectator 0.04 0.3 STAR 0.10 Λ (a) π 0.02 ĸ 10-40% 0 0.05 0.2 🔶 JAM/MF ഹ Ξ. $dv_1/dy|_{y}$ 0.00 0.00 IAM/MF w/o spectator 0.1 $V_2$ 0.06 0.10 $\pi^+$ $\pi^+$ 0 1293 0.04 0.05 -BM@N CBM MPD 0.02 0.04 0.00 -0.05(b) 0.00 $^{2}$ 4.6 < b < 9.4 fm |y| < 0.2, 4.6 < b < 9.4 fm -0.10 $-0.02^{L}_{2}$ 6 7 5 6 E895 $\sqrt{s_{NN}}$ (GeV) $\sqrt{s_{NN}}$ (GeV) -0.04 UrQMD Barvon-Mean-field Cascade Phys. Rev. C 97, 064913 (2018) 3 10 20 30 2 5 Collision Energy $\sqrt{s_{NN}}$ (GeV)

#### Anisotropic flow at FAIR/NICA energies is a delicate balance between:

- I. The ability of pressure developed early in the reaction zone () and
- II. The passage time for removal of the shadowing by spectators ()

### **Elliptic Flow** $(v_2)$ at NICA energies: Models vs Data



at  $\sqrt{s_{_{NN}}} \ge 7.7$  GeV pure string/hadronic cascade models underestimate  $v_2$  – need hybrid models with QGP phase (vHLLE+UrQMD, AMPT with string melting,...) at  $\sqrt{s_{_{NN}}} \ge 3-4.5$  GeV pure hadronic models give similar  $v_2$  signal compared to STAR data

# Anisotropic flow in Au+Au collisions at Nuclotron-NICA energies



Anisotropic flow at FAIR/NICA energies is a delicate balance between:

- I. The ability of pressure developed early in the reaction zone () and
- II. The passage time for removal of the shadowing by spectators ()

### **Nuclear incompressibility from collective**

P. Danielewicz, Control P. Control P. Control P. Science 298 (2002) 1592



### in Au+Au = 3 GeV: model vs. STAR data



P. Parfenov, Particles 5, no.4, 561-579 (2022)

Models do not describe all particle species equally well , of protons are described by JAM, UrQMD (hard EOS) and SMASH (hard EOS with softening at higher densities)

#### New STAR results from BES – II program were presented at QM2023



#### **New HADES results**





### **RHIC BES programs**

#### • Data taking by STAR at RHIC: $3 \le 200 \text{ GeV} (750 \le \text{L}_B \le 25 \text{ MeV})$

| Au+Au Collisions at RHIC |                                        |         |         |       |            |                   |                                  |         |         |       |                |  |
|--------------------------|----------------------------------------|---------|---------|-------|------------|-------------------|----------------------------------|---------|---------|-------|----------------|--|
| Collider Runs            |                                        |         |         |       |            | Fixed-Target Runs |                                  |         |         |       |                |  |
|                          | √ <mark>S<sub>NN</sub></mark><br>(GeV) | #Events | $\mu_B$ | Ybeam | run        |                   | √ <b>S<sub>NN</sub></b><br>(GeV) | #Events | $\mu_B$ | Ybeam | run            |  |
| 1                        | 200                                    | 380 M   | 25 MeV  | 5.3   | Run-10, 19 | 1                 | 13.7 (100)                       | 50 M    | 280 MeV | -2.69 | Run-21         |  |
| 2                        | 62.4                                   | 46 M    | 75 MeV  |       | Run-10     | 2                 | 11.5 (70)                        | 50 M    | 320 MeV | -2.51 | Run-21         |  |
| 3                        | 54.4                                   | 1200 M  | 85 MeV  |       | Run-17     | 3                 | 9.2 (44.5)                       | 50 M    | 370 MeV | -2.28 | Run-21         |  |
| 4                        | 39                                     | 86 M    | 112 MeV |       | Run-10     | 4                 | 7.7 (31.2)                       | 260 M   | 420 MeV | -2.1  | Run-18, 19, 20 |  |
| 5                        | 27                                     | 585 M   | 156 MeV | 3.36  | Run-11, 18 | 5                 | 7.2 (26.5)                       | 470 M   | 440 MeV | -2.02 | Run-18, 20     |  |
| 6                        | 19.6                                   | 595 M   | 206 MeV | 3.1   | Run-11, 19 | 6                 | 6.2 (19.5)                       | 120 M   | 490 MeV | 1.87  | Run-20         |  |
| 7                        | 17.3                                   | 256 M   | 230 MeV |       | Run-21     | 7                 | 5.2 (13.5)                       | 100 M   | 540 MeV | -1.68 | Run-20         |  |
| 8                        | 14.6                                   | 340 M   | 262 MeV |       | Run-14, 19 | 8                 | 4.5 (9.8)                        | 110 M   | 590 MeV | -1.52 | Run-20         |  |
| 9                        | 11.5                                   | 157 M   | 316 MeV |       | Run-10, 20 | 9                 | 3.9 (7.3)                        | 120 M   | 633 MeV | -1.37 | Run-20         |  |
| 10                       | 9.2                                    | 160 M   | 372 MeV |       | Run-10, 20 | 10                | 3.5 (5.75)                       | 120 M   | 670 MeV | -1.2  | Run-20         |  |
| 11                       | 7.7                                    | 104 M   | 420 MeV |       | Run-21     | П                 | 3.2 (4.59)                       | 200 M   | 699 MeV | -1.13 | Run-19         |  |
|                          |                                        |         |         |       |            | 12                | <b>3.0</b> (3.85)                | 2000 M  | 750 MeV | -1.05 | Run-18, 21     |  |
|                          |                                        |         |         |       |            |                   |                                  |         |         |       |                |  |





- \* A very impressive and successful program with many collected datasets, already available and expected results
- ✤ Limitations:
  - ✓ Au+Au collisions only
  - ✓ Among the fixed-target runs, only the 3 GeV data have full mid-rapidity coverage for protons (|y| < 0.5),

### **Summary and outlook**

- Measurements of anisotropic flow, flow fluctuations, correlations
- between flow of different harmonics are sensitive to many details of the initial conditions
- and the system evolution. It may provides access to the transport properties of the medium: EOS, sound speed viscosity, etc.
- v<sub>n</sub> at NICA energies shows strong energy dependence:
  - > At  $\sqrt{s_{NN}}$ =4.5 GeV v<sub>2</sub> from UrQMD, SMASH are in a good agreement with the experimental data
  - > At  $\sqrt{s_{NN}} \ge 7.7$  GeV UrQMD, SMASH underestimate  $v_2$  need hybrid models with QGP phase
  - > Detailed JAM model calculations for differential measurements of  $v_n$  at  $\sqrt{s_{NN}}$  = 2.4-4.5 GeV
  - The multi-differential high-statistics data from STAR/HADES/BM@N/MPD should enable a direct extraction of the EOS parameters at high baryon density via a Bayesian fit of the models to the data.

BM@N/NICA energies are very interesting: transition between hadronic and partonic matter?

## **Back-up slides**

### State-of-the-art modeling of HI collisions

Data-model comparison via Bayesian inference to optimize constraining power.



Detailed temperature dependence of viscosity!



Jetscape PRL.126.242301 Trjactum PRL.126.202301

#### Major uncertainty: initial condition and pre-hydro phase

8

### High-energy heavy ion collision



Extremely short passing time to take a snap-shot of the nuclear wavefunction in the two nuclei.
 Large particle production in overlap region means QGP is dense and expand hydrodynamically.



- and/or mass
  - Across multiple collision energies ٠
  - Coalescence ٠

- Hypernuclei at high μ<sub>B</sub> can probe Y-N (hyperonnucleon) interactions
  - Useful for neutron stars!
- v<sub>1</sub>: Consistent w/Hadronic transport model
  - Decreases with increasing collision energy

1.B. E. Aboona et al., (STAR Collaboration), Phys. Rev. Lett. 130, 211301(2023)



# Substructure of Oxygen



 $v_2\{2\}$  - sensitive to fluctuations

 $v_2\{4\}$  - reduced sensitivity to fluctuations

Data: in central event but fluctuations enhanced, (v<sub>2</sub> reduced overall)

Theory: Alpha clusters enhance fluctuations

Data strongly favor alpha-clustering



#### 2022: Nuclear structure via $V_n$ ratio



Phys.Rev.C 105 (2022) 1, 014901 • e-Print: 2109.00131

The  $V_n$  ratio for isobars – not affected by final state – is a good tool for precision studies of nuclear shapes.

### **RHIC BES programs**

#### • Data taking by STAR at RHIC: $3 \le 200 \text{ GeV} (750 \le \text{L}_B \le 25 \text{ MeV})$

| Au+Au Collisions at RHIC |                                        |         |         |       |            |                   |                                  |         |         |       |                |  |
|--------------------------|----------------------------------------|---------|---------|-------|------------|-------------------|----------------------------------|---------|---------|-------|----------------|--|
| Collider Runs            |                                        |         |         |       |            | Fixed-Target Runs |                                  |         |         |       |                |  |
|                          | √ <mark>S<sub>NN</sub></mark><br>(GeV) | #Events | $\mu_B$ | Ybeam | run        |                   | √ <b>S<sub>NN</sub></b><br>(GeV) | #Events | $\mu_B$ | Ybeam | run            |  |
| 1                        | 200                                    | 380 M   | 25 MeV  | 5.3   | Run-10, 19 | 1                 | 13.7 (100)                       | 50 M    | 280 MeV | -2.69 | Run-21         |  |
| 2                        | 62.4                                   | 46 M    | 75 MeV  |       | Run-10     | 2                 | 11.5 (70)                        | 50 M    | 320 MeV | -2.51 | Run-21         |  |
| 3                        | 54.4                                   | 1200 M  | 85 MeV  |       | Run-17     | 3                 | 9.2 (44.5)                       | 50 M    | 370 MeV | -2.28 | Run-21         |  |
| 4                        | 39                                     | 86 M    | 112 MeV |       | Run-10     | 4                 | 7.7 (31.2)                       | 260 M   | 420 MeV | -2.1  | Run-18, 19, 20 |  |
| 5                        | 27                                     | 585 M   | 156 MeV | 3.36  | Run-11, 18 | 5                 | 7.2 (26.5)                       | 470 M   | 440 MeV | -2.02 | Run-18, 20     |  |
| 6                        | 19.6                                   | 595 M   | 206 MeV | 3.1   | Run-11, 19 | 6                 | 6.2 (19.5)                       | 120 M   | 490 MeV | 1.87  | Run-20         |  |
| 7                        | 17.3                                   | 256 M   | 230 MeV |       | Run-21     | 7                 | 5.2 (13.5)                       | 100 M   | 540 MeV | -1.68 | Run-20         |  |
| 8                        | 14.6                                   | 340 M   | 262 MeV |       | Run-14, 19 | 8                 | 4.5 (9.8)                        | 110 M   | 590 MeV | -1.52 | Run-20         |  |
| 9                        | 11.5                                   | 157 M   | 316 MeV |       | Run-10, 20 | 9                 | 3.9 (7.3)                        | 120 M   | 633 MeV | -1.37 | Run-20         |  |
| 10                       | 9.2                                    | 160 M   | 372 MeV |       | Run-10, 20 | 10                | 3.5 (5.75)                       | 120 M   | 670 MeV | -1.2  | Run-20         |  |
| 11                       | 7.7                                    | 104 M   | 420 MeV |       | Run-21     | 11                | 3.2 (4.59)                       | 200 M   | 699 MeV | -1.13 | Run-19         |  |
|                          |                                        |         |         |       |            | 12                | <b>3.0</b> (3.85)                | 2000 M  | 750 MeV | -1.05 | Run-18, 21     |  |
|                          |                                        |         |         |       |            |                   |                                  |         |         |       |                |  |





- \* A very impressive and successful program with many collected datasets, already available and expected results
- ✤ Limitations:
  - ✓ Au+Au collisions only
  - ✓ Among the fixed-target runs, only the 3 GeV data have full mid-rapidity coverage for protons (|y| < 0.5),

#### Flow at AGS: Constraints for the Hadronic EOS



The main source of existing systematic errors in measurements is the difference between results from different experiments. New STAR measurements from BES II will provide better constraints for the Hadronic EOS







#### New STAR results from BES – II program were presented at QM2023



- The slopes of mid-rapidity v<sub>1</sub> for both light- and hyper-nuclei are scaled with A and/or mass
  - Across multiple collision energies
  - Coalescence

- Hypernuclei at high  $\mu_{\text{B}}$  can probe Y-N (hyperon-nucleon) interactions
  - Useful for neutron stars!
- v<sub>1</sub>: Consistent w/Hadronic transport model
  - · Decreases with increasing collision energy

1.B. E. Aboona et al., (STAR Collaboration), Phys. Rev. Lett. 130, 211301(2023)

