Измерения анизотропных коллективных потоков от LHC до NICA

Аркадий Тараненко (НИЯУ МИФИ, ЛФВЭ ОИЯИ)

Научная сессия секции ядерной физики ОФН РАН, посвященная 300-летию Российской Академии Наук, ОИЯИ, 1-5 апреля 2024

Работа поддержана Министерством науки и высшего образования РФ, проект "Новые явления в физике элементарных частиц и ранней Вселенной" № FSWU-2023-0073

Azimuthal anisotropy of particles at HIC 1989-2024

Sergei Voloshin, Y. Zhang, Z. Phys. C70,(1996), 665

$$
\frac{dN}{d(\varphi - \Psi_{RP})} = \frac{N_0}{2\pi} (1 + 2v_1 \cos(\varphi - \Psi_{RP}) + 2v_2 \cos(2\varphi - \Psi_{RP}) + \dots)
$$

 \Box The sinus terms are skipped by symmetry arguments \Box From the properties of Fourier's series one has $v_n = \left\langle \cos[nQ - \Psi_{RP}]\right\rangle$

 \Box Fourier coefficients V_n quantify anisotropic flow:

 v_1 is directed flow, v_2 is elliptic flow, v_3 is triangular flow, etc.

the collective behavior of particles in event or multiparticle azimuthal correlation **Term "flow" does not mean necessarily "hydro" flow – used only to emphasize**

Anisotropic Flow at RHIC-LHC

Initial eccentricity (and its attendant fluctuations) ε_n drive momentum anisotropy v_n with specific viscous modulation

State-of-the-art modeling of HI collisions

• Data-model comparison via Bayesian inference to optimize constraining power.

• Detailed temperature dependence of viscosity!

Jetscape PRL.126.242301 Trjactum PRL.126.202301

Major uncertainty: initial condition and pre-hydro phase

8

Anisotropic Flow at RHIC/LHC is acoustic

- \triangleright v_n measurements are sensitive to system shape (ε_n) , system size (RT) and transport coefficients $(\frac{\eta}{s}, \frac{\zeta}{s}, ...)$. arXiv:1305.3341
- \triangleright Acoustic ansatz

Roy A. Lacey, et al.

- \checkmark Sound attenuation in the viscous matter reduces the magnitude of v_n .
- \triangleright Anisotropic flow attenuation,

$$
\frac{v_n}{\epsilon_n} \propto e^{-\beta n^2}, \beta \propto \frac{\eta}{s} \frac{1}{RT}
$$

From macroscopic entropy considerations $S \sim (RT)^3 \propto \frac{dN}{dn}$

$$
\ln\left(\frac{v_n}{\epsilon_n}\right) \propto A \frac{\eta}{s} \left(\frac{dN}{d\eta}\right)^{\frac{-1}{3}}
$$
\n
$$
\bigotimes_{\text{Au + Au}} \bigotimes_{\text{Cul + Au}} \bigotimes_{\text{Cu + Au}} \bigotimes_{\text{Cu + Cu}} \bigotimes_{\text{d + Au}} \bigotimes_{p + Au}
$$
\nScalingexpected For similar $\frac{\eta}{s}$ and $\frac{dN}{d\eta}$

 \checkmark Characteristic 1/(RT) viscous damping validated

- \checkmark Clear pattern for n^2 dependence of viscous attenuation
- \checkmark Important constraint for η /s & ζ/s

Flow is acoustic Flow is acoustic STAR, Phys. Rev. Lett. 122 (2019) 172301

 \checkmark Characteristic 1/(RT) viscous damping validated \checkmark Viscous damping supersedes the influence of eccentricity for "small" systems \checkmark Similar slopes imply similar $\frac{\eta}{s}$.

Beam energy dependence of V_{n}

- \triangleright Anisotropic flow attenuation:
- \triangleright From macroscopic entropy considerations:

$$
S \sim (RT)^3 \sim \langle N_{Ch} \rangle \text{ then } RT \sim \langle N_{Ch} \rangle^{1/3}
$$

$$
\ln \left(\frac{V_n}{\varepsilon_n} \right) \propto -\left(\frac{\eta}{s} \right) \langle N_{Ch} \rangle^{-1/3}
$$

Using two different harmonics :

$$
\left[\ln\left(\frac{v_n^{1/n}}{v_2^{1/2}}\right) + \ln\left(\frac{\epsilon_2^{1/2}}{\epsilon_n^{1/n}}\right)\right] \langle N_{\text{Ch}}\rangle^{1/3} \propto -A\left(\frac{\eta}{s}\right)
$$

$$
\beta'' = \ln\left(\frac{v_n^{1/n}}{v_2^{1/2}}\right) \langle N_{\text{Ch}}\rangle^{1/3} \propto -A\left(\frac{\eta}{s}\right)
$$

$$
v_n \propto k \varepsilon_n, \qquad k = e^{-\beta n^2}
$$

$$
\frac{v_n}{\varepsilon_n} \propto e^{-\beta n^2}, \qquad \beta \propto \frac{\eta}{s} \frac{1}{RT}
$$

$$
\sum_{\substack{1.9 \ \vdots \ \vdots \ 1.8 \ \vdots \ 1.7 \ \vdots \ 1}}^{\text{min}} \qquad \qquad \sum_{n=1}^{\text{min}} \frac{1}{n}
$$

 $\sqrt{s_{NN}}$ (GeV)

10

19

100

Beam energy dependence of Vⁿ

$$
\beta'' = \ln \left(\frac{v_n^{1/n}}{v_2^{1/2}} \right) (\text{N}_{\text{Ch}})^{1/3} \propto -\text{A} \left(\frac{\eta}{s} \right) \qquad \text{A: is constant}
$$

R. Lacey, SUNY Stony Brook V_n shows a monotonic increase with beam energy. The viscous coefficient, which encodes the transport coefficient (η/s) , indicates a non-monotonic behavior as a function of beam energy.

Anisotropic flow in Au+Au collisions at Nuclotron-NICA M. Abdalla Retal Griff & S. Lett. B 827, 137003 (2022) 0.20 $\frac{dy}{dx}$ $\int \frac{dy}{dx} \Big|_{x=0} =$ 0.06 p IAM/MF 0.4 Au+Au Collisions at RHIC 0.15 IAM/MF w/o spectator 0.04 0.3 **STAR** 0.10 Λ (a) \Box π 0.02 $10 - 40%$ K 0.2 \circ 0.05 $+$ JAM/MF ਤੇ $dV_1/dy|_y$ 0.00 0.00 IAM/MF w/o spectator 0.1 S^2 0.06 0.10 π^+ π^+ Ω ।
इ[.] व्हा पश् $\overline{ }$ \mathbf{R} 0.04 0.05 **BM@N CBM MPD** 0.00 0.02 -0.05 (b) 0.00 \mathbf{S}^{α} $|y|$ < 0.2, 4.6 < b < 9.4 fm $4.6 < b < 9.4$ fm -0.10 → p E877 $-0.02\frac{1}{2}$ \Diamond p E895 5 6 7 5 6 ∇ Z=1 hadrons FOPI $\sqrt{s_{NN}}$ (GeV) $\sqrt{s_{NN}}$ (GeV) -0.04 **UrOMD** Barvon-Mean-field Cascade Phys. Rev. C 97, 064913 (2018) $\overline{20}$ \mathcal{P} 3 10 30 5 Collision Energy $\sqrt{s_{NN}}$ (GeV)

Anisotropic flow at FAIR/NICA energies is a delicate balance between:

- The ability of pressure developed early in the reaction zone () and
- II. The passage time for removal of the shadowing by spectators ()

Elliptic Flow (*v***²) at NICA energies: Models vs Data**

at √s_{NN} ≥ 7.7 GeV pure string/hadronic cascade models underestimate v₂ – need hybrid models with QGP phase (vHLLE+UrQMD, AMPT with string melting,...) at $\sqrt{s_{NN}} \geq 3{\text -}4.5$ GeV pure hadronic models give similar v_2 signal compared to STAR data

Anisotropic flow in Au+Au collisions at Nuclotron-NICA energies

Anisotropic flow at FAIR/NICA energies is a delicate balance between:

- The ability of pressure developed early in the reaction zone () and
- II. The passage time for removal of the shadowing by spectators ()

Nuclear incompressibility from collective

P. Danielewicz, **R. Proton flow** Science 298 (2002) 1592

14

in Au+Au =3 GeV: model vs. STAR data

P. Parfenov, Particles 5, no.4, 561-579 (2022)

Models do not describe all particle species equally well **, of protons are described by JAM, UrQMD (hard EOS) and SMASH (hard EOS with softening at higher densities)**

New STAR results from BES – II program were presented at QM2023

New HADES results

RHIC BES programs

\bullet Data taking by STAR at RHIC: $3 < 200$ GeV (750 $< \frac{1}{B} < 25$ MeV)

- A very impressive and successful program with many collected datasets, already available and expected results
- Limitations:
	- \checkmark Au+Au collisions only
	- Among the fixed-target runs, only the 3 GeV data have full mid-rapidity coverage for protons ($|y|$ < 0.5),

Summary and outlook

- Measurements of anisotropic flow, flow fluctuations, correlations
- between flow of different harmonics are sensitive to many details of the initial conditions
- and the system evolution. It may provides access to the transport properties of the medium: EOS, sound speed viscosity, etc.
- **vⁿ at NICA energies shows strong energy dependence:**
	- > At √s_{NN}=4.5 GeV v₂ from UrQMD, SMASH are in a good agreement with the experimental data
	- \triangleright At √s_{NN}≥7.7 GeV UrQMD, SMASH underestimate v $_2$ need hybrid models with QGP phase
	- > Detailed JAM model calculations for differential measurements of $v_{\sf n}^{\sf}$ at √s $_{\sf NN}$ = 2.4-4.5 GeV
	- The multi-differential high-statistics data from STAR/HADES/BM@N/MPD should enable a direct extraction of the EOS parameters at high baryon density via a Bayesian fit of the models to the data.

BM@N/NICA energies are very interesting: transition between hadronic and partonic matter?

Back-up slides

State-of-the-art modeling of HI collisions

• Data-model comparison via Bayesian inference to optimize constraining power.

• Detailed temperature dependence of viscosity!

Jetscape PRL.126.242301 Trjactum PRL.126.202301

Major uncertainty: initial condition and pre-hydro phase

 21

High-energy heavy ion collision

1) Extremely short passing time to take a snap-shot of the nuclear wavefunction in the two nuclei. 2) Large particle production in overlap region means QGP is dense and expand hydrodynamically.

22

- Across multiple collision energies ٠
- **Coalescence**
- Hypernuclei at high μ_B can probe Y-N (hyperonnucleon) interactions
	- Useful for neutron stars!
- v₁: Consistent w/Hadronic transport model

1.B. E. Aboona et al., (STAR Collaboration), Phys. Rev. Lett. 130, 211301(2023)

• Decreases with increasing collision energy

Substructure of Oxygen

 $v_2\{2\}$ - sensitive to fluctuations

 v_2 {4} - reduced sensitivity to fluctuations

Data: in central event but fluctuations enhanced, (v₂ reduced overall)

Theory: Alpha clusters enhance fluctuations

Data strongly favor alpha-clustering

2022: Nuclear structure via V_n ratio

Phys.Rev.C 105 (2022) 1, 014901 • e-Print: 2109.00131

The V_n ratio for isobars – not affected by final state – is a **R. Lacey, SUNY Stony Brook** 10

RHIC BES programs

\bullet Data taking by STAR at RHIC: $3 < 200$ GeV (750 $< \frac{1}{B} < 25$ MeV)

- A very impressive and successful program with many collected datasets, already available and expected results
- Limitations:
	- \checkmark Au+Au collisions only
	- Among the fixed-target runs, only the 3 GeV data have full mid-rapidity coverage for protons ($|y|$ < 0.5),

Flow at AGS: Constraints for the Hadronic EOS

The main source of existing systematic errors in measurements is the difference between results from different experiments. New STAR measurements from BES II will provide better **constraints for the Hadronic EOS**

New STAR results from BES - II program were presented at QM2023

- The slopes of mid-rapidity v_1 for both light- and hyper-nuclei are scaled with A and/or mass
	- Across multiple collision energies
	- Coalescence ٠
- Hypernuclei at high μ_B can probe Y-N (hyperonnucleon) interactions
	- Useful for neutron stars!
- **v₁**: Consistent w/Hadronic transport model
	- Decreases with increasing collision energy

1.B. E. Aboona et al., (STAR Collaboration), Phys. Rev. Lett. 130, 211301(2023)

