Облучение трековых детекторов в пучках ионов ксенона на ускорительном комплексе Нуклотрон/NICA Зайцев Андрей ЛФВЭ ОИЯИ

Секция ядерной физики ОФН РАН Объединённый институт ядерных исследований

Мотивация

- Фильмовая регистрация треков ускоренных ядер Хе
- Исследование множественной фрагментации тяжелых ядер
 - Изучение образования нестабильных ядерных состояний в процессах релятивистской фрагментации
 - Изотопический анализ состава фрагментов налетающего ядра
- Профилометрия пучков ионов Хе методом ТТТД

$24 Mg \rightarrow 6 \alpha$

События периферической диссоциации, особенности индивидуальные отражающие налетающих ядер, наблюдаются в ЯЭ также часто и Они полно, как И центральные соударения. указывают принципиальную на возможность ядерной структуры изучения конусе В релятивистской фрагментации. Однако в таком аспекте применение традиционных магнитных спектрометров С координатными И сцинтилляционными детекторами оказалось весьма ограниченным. Возникшие сложности обусловлены драматической разницей в ионизации ядер пучка и релятивистских фрагментов при их крайне малой угловой расходимости, и, зачастую, примерным совпадением по магнитной жесткости. По этим причинам осуществлялась постановка измерений с регистрацией фрагментов релятивистских максимально близких по заряду к изучаемому ядру.

²²Ne \rightarrow 5a 16 $^{2}C \rightarrow 3a$ and Care with twood

Alpha-Clusters in Nuclear Systems

P. Schuck

Y. Funaki, H. Horiuchi, G. Röpke, A. Tohsaki , W. von Oertzen and T. Yamada

4

Поиск Nα состояний в диссоциации ⁸⁴Kr (950 A МэВ)

Поиск Nα состояний в диссоциации ⁸⁴Kr

Корреляция образования ядра ⁸Ве и множественности α-частиц

Изотопический состав сопровождающей фрагментации ядер

8

x = 1.3 mm y = 0.07 mm

Облучение ядерной эмульсии ядрами Xe 3.85A GeV на выведенном канале Нуклотрона в точке F3 (2022г.)

Облучение ядерной эмульсии на установке BM@N

12

Облучение ядерной эмульсии ядрами ксенона F3 (2022 г.)

Облучение ядерной эмульсии ядрами ксенона F3 (2022 г.)

Увеличенное изображение ядерной эмульсии, облученной в пучке ядер Хе на выведенном канале в точке F3 (2022 г.)

Облучение ядерной эмульсии ядрами ксенона (2022 г.)

x4

Z=54 ~ 85% Z=1 ~ 15%

Автоматизированный поиск ядерных взаимодействий

Метод твердотельных трековых детекторов

Аллилдигликолькарбонат (АДК) «Columbia Resin» №39

 CH_2 H_2C

 $C_{12}H_{18}O_7$

CR39, Увеличенное изображение облученного образца **BX63.** микроскопа Olympus полученное С помощью Представлена процедура автоматического анализа и счета входящих треков («дырок») ядер Хе в плоскость детектора **CR39**, реализованного фирменном B программном обеспечении CellSens Olympus (демонстрационная версия).

Сканирование ТТТД СR39

Count and Measure Results														
🔉 🟹 📲	* 💷 🛛 🤣 🕶													Ŧ
💆 Object Measurer	ments 🛛 🕅 Object Fil	lter 🛛 🏙 Class Me	asurements 🏨 🤇	Class Histogram 🛛 🙀 ROI Mea	surements 🛛 🔁 ROI Histogram	m 🛛 😓 Relation Measurem	ents							- ⊲ ⊳
	Object Class	Object ID	Area [µm²]	Center of Mass X [µm]	Center of Mass Y [µm]	Mean (Radius) [µm]	Aspect Ratio	Shape Factor	Perimeter [µm]	Mean (Gray Intensity Value)	Std Dev (Gray Intensity Value)	Mean (Color Intensity Value)	Convexity	^
1471	1	1471	3.9399	480.5583	143.8894	1.1178	1.0626	0.8803	6.6138	548.2963	50.5659	-	0.9818	
1472	1	1472	3.0643	576.1028	143.8408	0.9608	1.1429	0.8852	5.7571	559.8333	46.3650	-	0.9767	
1473	1	1473	3.5021	598.2294	143.8344	1.0247	1.1429	0.9196	6.0735	544.2083	50.3078	-	1.0000	
1474	1	1474	3.7210	714.7018	143.9138	1.0754	1.0833	0.8690	6.4555	551.8039	51.2457	-	0.9808	
1475	1	1475	3.5751	844.7516	143.8454	1.0542	1.1250	0.8193	6.5211	543.4898	61.7312	-	0.9423	
1476	1	1476	4.0128	903.8446	143.9424	1.1293	1.1250	0.8940	6.6793	545.0545	65.6712	-	0.9821	
1477	1	1477	5.9098	609.7833	144.6614	1.3088	1.5000	0.8326	8.5893	538.2716	58.7182	-	0.9759	
1478	1	1478	11.3088	213.6015	144.7545	1.7245	2.0000	0.4209	16.6655	535.1032	59.6994	-	0.8031	
1479	1	1479	3.9399	254.6201	144.5096	1.1013	1.1615	0.8237	6.8375	545.8889	58.0401	-	0.9474	
1480	1	1480	3.5751	542.3260	144.5124	1.0465	1.0772	0.8786	6.2973	540.6327	48.0619	-	0.9	
Count	-	-	5803	5803	5803	5803	5803	5803	5803	5803	5803	0	ŧ	
Count in filter range	s -	-	5803	5803	5803	5803	5803	5803	5803	5803	5803	0	ŧ	
Mean	-	-	4.1059	573.9250	283.8555	1.0998	1.2537	0.7739	7.6998	561.3611	51.9048	-	0.9	^
Standard Deviation	-	-	1.7908	321.0697	165.1803	0.2066	0.4723	0.2221	4.4597	30.7914	17.3440	-	0.1	

Анализ облученного ТТТД CR39 ядрами Хе на установке BM@N

Table 3. Estimation of track density by the visual method.

No.	Square side	Total number	Number of	ratio of tracks to	Fluence
Square	[mm]	of dips	tracks	dips	[mm ⁻²]
1	0.25	1370	1601	1.16862	25616
2	0.25	1288	1487	1.15450	23792
3	0.25	1110	1250	1.12613	20000
4	0.25	982	1077	1.09674	17232
5	0.25	744	776	1.04301	12416
б	0.25	502	528	1.05179	8448
7	0.5	980	991	1.01122	3964
8	1	772	772	1.00000	772

Пучок имеет эллиптическую форму с наклоном эллипса около 45°. Эллипс пучка, внутри которого плотность «дырок» превышает 10³ мм⁻², имеет размеры большой и малой полуосей порядка 16 и 8 мм

Figure 14: Spatial distribution of dip over the area of the CR-39 SSNTD. The bin width is 0.5 mm. On the right there are the centres of the analysed squares.

соответственно.

Облучение ТТТД на станции СОЧИ

Режимы облучения:

- 1. СR39. Расфокусированный пучок с флюенсом 1,8*10³ частиц/_{см2} за сброс. Набрано 3 сброса.
- 2. СR39. Расфокусированный пучок с флюенсом 2,8*10⁴ ^{частиц}/_{см2} за сброс. Набрано 4 сброса.
- 3. ПЭТФ (Майлар). Расфокусированный пучок с флюенсом

2,8*10^{4 частиц}/_{см2} за сброс. Набрано 36 сбросов.

4. CR39. Сфокусированный пучок с флюенсом ≈10⁶-10⁷

ч^{астиц}/_{см2} за сброс. Набран 1 сброс.

Облучение детекторов CR39 в расфокусированном пучке ионов Xe⁺²⁸ 3.2*A* MeV на станции СОЧИ (2023 г.)

Облученный образец CR39.

Увеличенные изображения облученного образца CR39 с использованием объективов x4 и x40 крат. Черные окружности представляют собой отдельные следы прошедших ионов Хе через детектор CR39. 1 mm

Анализ образца CR39, облученного в сфокусированном пучке ионов ¹²⁴Xe⁺²⁸ на станции SOChI

Xe⁺²⁸ SOCHI Focused Two projections X and Y axes. Bin 0.175x0.105 mm² Total number of ions - 50776

Заключение

- Выполнены успешные облучения опытных образцов ядерной эмульсии ядрами ¹²⁴Хе с энергией 3.9 ГэВ на нуклон.
- Получен уникальный материал для анализа множественных состояний α-частиц и нуклонов при оптимальной энергии налетающего ядра.
- Проведен анализ состава пучка ядер, полученного во время 4-го физического сеанса работы ускорителя Нуклотрон/NICA.
- Применение метода ТТТД СR-39 позволило полностью реконструировать профиль и интенсивность пучка ядер и ионов Хе при энергиях 3.8 ГэВ/н и 3.2 МэВ/н.

Спасибо за внимание!

Облучение ядерной эмульсии ядрами аргона (2014 г.)

Ar 1.2 А ГэВ при интенсивности 10⁵

треков	I область	II область	III область	Все
просмотренных квадратов	13	15	15	43
черных (Z=18)	63	65	96	224
черных (Z<18)	16	35	33	84
серых (Z=2)	10	8	11	29
релят. (Z=1)	64	93	92	249

Z=18 (38%)Z < 18 (14%)Z = 2 (5%)Z = 1 (43%)

Метод твердотельных трековых детекторов

