Pair charmonia production in the Parton Reggeization Approach in the LHCb experiment¹

A. Chernyshev^{\dagger ,2} and V. Saleev^{\dagger ,*}

[†]Samara University ^{*}Joint Institute for Nuclear Research

Scientific session of the nuclear physics section of the Division of Physical Sciences of the Russian Academy of Sciences $1-5^{\rm Apr.}$ 2024,

BLTP JINR, Dubna

¹The talk is based on Phys.Rev.D 106 (2022) 11, 114006.

²Email: aachernyshoff@gmail.com

Outline

Introduction

- Parton Reggeization Approach
- Quarkonium production
- 4 Double parton scattering
- 5 KaTie
- $\mathbf{6} \quad \boldsymbol{\psi}[1S] + \boldsymbol{\psi}[1S]$
- $\bigcirc \psi[1S] + \psi[2S]$
- 8 Conclusions

9 Backup

Introduction	Parton Reggeization Approach	Quarkonium production	Double parton scattering	KaTie	$\psi[1S] + \psi[1S]$	$\psi[1S] + \psi[2S]$	Conclusions	Backup
•	000	000	0	0	0000	000	0	0000

Introduction: motivation

Heavy quarkonia production in QCD

perturbative part (hard scattering) + *non-perturbative* part (hadronization)

Studying hadronization:

• Being a *bound non-relativistic state* consist of heavy quarks, quarkonium is the best way to understand *hadronization* in QCD;

Quarkonia as tools:

• Gluon content of the proton:

- Relatively small $M_{Q[1S]} \simeq 3.10-9.46$ GeV is access to small $x \sim Me^{-y}/\sqrt{s}$, at LHC: $x \sim 10^{-4} 10^{-6}$;
- Clean experimental reconstruction;

(Important for future SPD NICA experiment)

Multipartonic interactions:

In the pair J/ψ production since pioneer works of NA3 Collaboration in *pA* and π^-A collisions at $\sqrt{s} \simeq 17$ GeV to ALICE, ATLAS CMS, and LHCb Collaborations works at $\sqrt{s} = 7 - 13$ TeV;

▶ In associated production with Z/W bosons, D mesons, ...;

o ...

In this talk we discuss $p + p \rightarrow \psi[1S] + \psi[1S] + X$ and $p + p \rightarrow \psi[1S] + \psi[2S] + X$ pair charmonia productions. Our work is motivated by recent LHCb Collaboration measurements_{[Aaij et al.} /23].

Introduction	Parton Reggeization Approach	Quarkonium production	Double parton scattering	KaTie	$\psi[1S] + \psi[1S]$	$\psi[1S] + \psi[2S]$	Conclusions	Backup
0	•00	000	0	0	0000	000	0	0000

Multi-Regge kinematics

At high energies $s \rightarrow \infty$ scattering $2 \rightarrow n+2$ can be considered in Multi–Regge kinematics (MRK).³

Double Regge limit:

 $\forall i=1,2: \quad s\gg s_i\gg t_i=-q_i^2\simeq \mathbf{q}_{T_i}^2,$

momentum fractions: $z_1 = q_1^+ / P_A^+$ and $z_2 = q_2^- / P_B^-$.

Main MRK properties:

- Rapidity ordering: $y(P_{A'}) \rightarrow +\infty$, $y(P_{B'}) \rightarrow -\infty$, $|y(k)| < \infty$;
- Small momentum fractions: $z_1 \sim z_2 \sim z \ll 1$, so $|\mathbf{k}_T| \ll \sqrt{s}$;
- Corresponding dominance of ± components:

$$\begin{split} q_1^+ &\sim O(z) \gg q_1^- \sim O(z^2), \\ q_2^- &\sim O(z) \gg q_2^+ \sim O(z^2). \end{split}$$

Two approaches to obtain this asymptotics:

- Quasi MRK approach_[BFKL '75,76,78];
- Effective action approach_[Lipatov '95; Lipatov and Vyazovsky '01].

³We use Sudakov decomposition: $p = (p^+n_- + p^-n_+)/2 + p_T$, where $n^{\pm} = (1, 0, \pm 1)$, so that $p^{\pm} = (p, n^{\pm})$ and $y = (1/2) \ln (p^+/p^-)$.

Introduction	Parton Reggeization Approach	Quarkonium production	Double parton scattering	KaTie	$\psi[1S] + \psi[1S]$	$\psi[1S] + \psi[2S]$	Conclusions	Backup
0	000	000	0	0	0000	000	0	0000

Parton Reggeization Approach

Auxiliary hard subprocess: $|q(p_1) + \bar{q}(p_2) \rightarrow g(k_1) + \mathcal{Y}(k) + g(k_2)|$ with $p_i^2 = 0$, $p_1^- \ll p_1^+$, $p_2^+ \ll p_2^-$. Kinematic variables $(0 < z_i < 1, i = 1, 2)$: $z_1 = \frac{q_1^+}{p_1^+} = \frac{p_1^+ - k_1^+}{p_1^+}, \qquad z_2 = \frac{q_2^-}{p_2^-} = \frac{p_2^- - k_2^-}{p_2^-}.$ Two main limits where $|\mathcal{M}|^2$ can be factorized: • Collinear limit: $\mathbf{k}_{T_i}^2, \mathbf{k}_T^2 \ll \mu^2$ and z_i -arbitrary: $\overline{\mid \mathcal{M} \mid^2}_{\text{CL}} \simeq \frac{4g_{\mathcal{S}}^4}{\mathbf{k}_{T_*}^2 \mathbf{k}_{T_*}^2} P_{qq}(z_1) P_{qq}(z_2) \frac{\mid \mathcal{A} \mid^2}{z_1 z_2}$ • Multi–Regge limit: $z_i \ll 1$ and $\mathbf{k}_{T_i}^2, \mathbf{k}_T^2$ –arbitrary: $\overline{|\mathcal{M}|^2}_{\mathrm{MRK}} \simeq \frac{4g_S^4}{\mathbf{k}_T^2 \mathbf{k}_T^2} \,\tilde{P}_{qq}(z_1) \,\tilde{P}_{qq}(z_2) \,\frac{\overline{|\mathcal{A}_{\mathrm{PRA}}|^2}}{z_1 \, z_2}$ *Modified MRK approximation* [Nefedov and Saleev '20]: $\mathbf{k}_{T_i}^2$, \mathbf{k}_{T}^2 , and z_i -arbitrary:

$$\overline{|\mathcal{M}|^2}_{\mathrm{MMRK}} \simeq \frac{4g_S^4}{\tilde{q}_1^2 \, \tilde{q}_2^2} \, P_{qq}(z_1) \, P_{qq}(z_2) \frac{\overline{|\mathcal{A}_{\mathrm{PRA}}|^2}}{z_1 \, z_2},$$

where $\tilde{q}_i^2 = \mathbf{q}_{T_i}^2 / (1 - z_i)$, P_{qq} -DGLAP splitting function. *This factorization formula has both correct limits*.

Introduction	Parton Reggeization Approach	Quarkonium production	Double parton scattering	KaTie	$\psi[1S] + \psi[1S]$	$\psi[1S] + \psi[2S]$	Conclusions	Backup
0	000	000	0	0	0000	000	0	0000

Parton Reggeization Approach

Substituting $\overline{|\mathcal{M}|^2}_{MMRK}$ into the CPM factorization formula and changing variables, one can obtain:

$$d\boldsymbol{\sigma} = \int_{0}^{1} \frac{dx_{1}}{x_{1}} \int \frac{d^{2}\mathbf{q}_{T_{1}}}{\pi} \Phi_{q}(x_{1}, t_{1}, \mu^{2}) \int_{0}^{1} \frac{dx_{2}}{x_{2}} \int \frac{d^{2}\mathbf{q}_{T_{2}}}{\pi} \Phi_{\bar{q}}(x_{2}, t_{2}, \mu^{2}) \times d\hat{\sigma}_{\text{PRA}} + O\left(\frac{\Lambda^{2}}{\mu^{2}}, \frac{\mu^{2}}{s}\right),$$

here $x_1 = q_1^+ / P_1^+$ and $x_2 = q_2^- / P_2^-$, $t_i = \mathbf{q}_{T_i}^2$, and

$$\Phi_i(x,t,\mu^2) = \frac{\alpha_s(\mu)}{2\pi} \frac{T_i(t,\mu^2,x)}{t} \times \sum_j \int_x^1 dz \, P_{ij}(z) \, F_j\left(\frac{x}{z},t\right) \times \theta\left(\Delta(t,\mu)-z\right)$$

is a *unintegrated PDF (uPDF)* calculated in *(Modified) Kimber–Martin–Ryskin–Watt*_[KMR '01; MRW '03] model based on *last–step evolution* mechanism.

► $T_i(t, \mu^2, x)$ is a *Sudakov formfactor*, which regularizes collinear divergences and $t \to 0$ divergence and satisfies boundary conditions: $T_i(t = 0, \mu^2, x) = 0$ and $T_i(t = \mu^2, \mu^2, x) = 1$. The exact solution for *Sudakov formfactor* was found $\ln_{[Nefedov and Saleev '20]}$.

• $\Delta(t,\mu) = \mu/(\mu + \sqrt{t})$ is a KMR-cutoff function which ensures rapidity ordering of the last emitted parton and particles produced in the hard process and regularizes IR-divergences.

The partonic cross section $d\hat{\sigma}_{PRA}$ is expressed in terms of squared amplitude $|\mathcal{A}_{PRA}|^2$ calculated in the *Lipatov's EFT for Multi–Regge processes*_[Lipatov'95] in a standard way.

Introduction	Parton Reggeization Approach	Quarkonium production	Double parton scattering	KaTie	$\psi[1S] + \psi[1S]$	$\psi[1S] + \psi[2S]$	Conclusions	Backup
0	000	●OO	0	0	0000	000	0	0000

Quarkonium production

Due to high mass $M_{\psi[1S]} \simeq 3.10$ GeV and $M_{\Upsilon[1S]} \simeq 9.46$ GeV, these states can be considered as *non-relativistic* in some potential models, f.e., with *Cornell potential*:

$$\mathscr{V}_{\text{Cornell}} = -C_F \frac{\alpha_S(1/r)}{r} + \sigma r,$$
 one can obtain: $\alpha_S^2(m_q v) \simeq v^2$

The velocity expansion for quarkonium eigenstate:

 $|Q[q\bar{q}[1S]]\rangle = O(v^0) |q\bar{q}[^3S_1^1]\rangle + O(v^1) |q\bar{q}[^3P_J^8] + g\rangle + O(v^{3/2}) |q\bar{q}[^1S_0^8] + g\rangle + O(v^2) |q\bar{q}[^3S_1^8] + gg\rangle + \dots,$

NRQCD (non-relativistic EFT) factorization formula[Bodwin, Braaten, Lepage '95]:

$$d\sigma_{Q} = \sum_{n} d\sigma_{q\bar{q}[n]} \times \left\langle O_{n}^{Q} \right\rangle,$$

here $\langle O_n^Q \rangle$ is LDME (squared NRQCD amplitude of quarkonia production with quantum numbers *n*). NOTE THAT COLOUR-SINGLET LDME ARE LO IN POWERS OF *v* FOR *S* WAVE STATE.

Some open «puzzles»:

- J/ψ polarization_[Butenschoen, Kniehl '12];
- Pair J/ψ production_[He, Kniehl, Nefedov, Saleev '21];
- Octet contribution in η_c hadroproduction_[Butenschoen, Kniehl '12].
- Associated $J/\psi + \psi[2S]$ production_[Aaij et.al '23] (?);

Improved Color Evaporation Model (ICEM)[Ma and Vogt '16]

ICEM assumes «democracy» between different $|q\bar{q}[n]\rangle$ states:

 $O(v^0)$ for ${}^1S_0^{1,8}$, ${}^3S_1^{1,8}$ states.

Picture of heavy quarkonia production in the ICEM:

$$\frac{d\sigma_Q}{d^3p} = \mathcal{F}^Q \times \int_{M_Q}^{2M_H} dM \, d^3p' \, \delta^{(3)}\left(\mathbf{p} - \frac{M_Q}{M}\mathbf{p}'\right) \frac{d\sigma_{q\bar{q}}}{dM \, d^3p'} + O\left(\lambda^2/m_q^2\right)$$

• Production of $q\bar{q}$ pair with momentum p' in hard process;

• Introduction of soft scale λ ($m_q \gg \lambda \gg \Lambda$):

$$p' = p + p_S + p_X$$
, soft part : $p_{S,X}^2 > \lambda^2$,

Assume isotropic emission of the exchanged gluons $p_S^0 \simeq 0$ and due to $p_X^0 > 0$: $M > M_Q$;

• Based on analysis of quarkonia spectroscopy, ICEM assumes that all $q\bar{q}$ pairs below $H\bar{H}$ threshold hadronize to quarkonium with probability \mathcal{F}^{Q} ;

▶ THRESHOLD EFFECTS ARE TAKEN INTO ACCOUNT BY THE CONDITION $p_S^0 \simeq 0$.

• By counting powers of λ : $p_{S,X}^{\mu}$, $p^i \sim O(\lambda)$, $p^0 \sim O(m_q)$: $p = (M_Q/M) p' + O(\lambda^2/m_q^2)$

▶ THIS MATCHING CONDITION IMPROVES p_T -scaling.

Introduction	Parton Reggeization Approach	Quarkonium production	Double parton scattering	KaTie	$\psi[1S] + \psi[1S]$	$\psi[1S] + \psi[2S]$	Conclusions	Backup
0	000	000	0	0	0000	000	0	0000

Inclusive $\psi[1S]$ and $\psi[2S]$ production in the ICEM

We obtain the following values of \mathcal{F}^{ψ} and $\mathcal{F}^{\psi'}$ for $\psi[1S]$ and $\psi[2S]$ states respectively:

 $\mathcal{F}^{\psi} \simeq 0.02$ and $\mathcal{F}^{\psi'} \simeq 0.06$

As it was obtained in [Cheung and Vogt '18]:

 $\mathcal{F}^{\Upsilon[1S]} < \mathcal{F}^{\Upsilon[2S]} < \mathcal{F}^{\Upsilon[3S]}$

The absence of hierarchy, f.e., as in CSM, is associated with a lower limit of integration M_Q , since Q[n'S] > Q[nS] for n' > n. But the ratio $\psi[2S]$ to $\psi[1S]$ is «ok»_[Ma and Vogt '16]:

Figure 1: The data are from LHCb Collaboration[Aaij et.al. /11,12].

Introduction	Parton Reggeization Approach	Quarkonium production	Double parton scattering	KaTie	$\psi[1S] + \psi[1S]$	$\psi[1S] + \psi[2S]$	Conclusions	Backup
0	000	000	•	0	0000	000	0	0000

SPS and DPS

Standard approach to study multi-particle production is to use so-called *single parton scattering (SPS)*:

$$d\sigma_{\mathcal{H}\mathcal{H}'}^{\text{SPS}} = \left[f_g(x_1, \mu^2) \times f_g(x_2, \mu^2) \right] \otimes d\hat{\sigma}_{gg \to \mathcal{H}\mathcal{H}'}(x_1, x_2)$$

There is another approach, this is so-called *double parton scattering (DPS)*:

$$\begin{split} d\sigma_{\mathcal{H}\mathcal{H}'}^{\text{DPS}} &= \frac{1}{(1+\delta_{\mathcal{H}\mathcal{H}'})\,\sigma_{\text{eff}}} \left[\begin{array}{c} \underline{D_{gg}(x_1, x_2, \mu^2)} \\ f_g(x_1, \mu^2) \times f_g(x_2, \mu^2) \end{array} \times \underbrace{D_{gg}(x_1', x_2', \mu^2)}_{f_g(x_1', \mu^2) \times f_g(x_2', \mu^2)} \right] \\ & \otimes \left[d\hat{\sigma}_{gg \to \mathcal{H}}(x_1, x_1') \times d\hat{\sigma}_{gg \to \mathcal{H}'}(x_2, x_2') \right] \\ & \simeq \frac{d\sigma_{\mathcal{H}}^{\text{SPS}} \times d\sigma_{\mathcal{H}'}^{\text{SPS}}}{(1+\delta_{\mathcal{H}\mathcal{H}'})\,\sigma_{\text{eff}}} \end{split}$$

▶ THIS FORMULA IS BASED ON THE FOLLOWING ASSUMPTIONS:

- Hard part factorization: $d\hat{\sigma}_{ijkl \rightarrow \mathcal{HH}'} = d\hat{\sigma}_{ik \rightarrow \mathcal{H}} \times d\hat{\sigma}_{jl \rightarrow \mathcal{H}'}$
- DECOMPOSITION OF GDPDF'S: $\Gamma_{ij}(x_1, x_2, \mu_1^2, \mu_2^2; \mathbf{b}_1, \mathbf{b}_2) = D_{ij}(x_1, x_2, \mu_1^2, \mu_2^2) \times f(\mathbf{b}_1) f(\mathbf{b}_2)$ $\sigma_{\text{eff}} = \left[\int d^2 \mathbf{b} \ T^2(\mathbf{b}) \right]^{-1} \text{ is a free parameter } [2, 25] \text{ mb}$
- ► FOR DETAILS SEE **backup slides**.

Introduction	Parton Reggeization Approach	Quarkonium production	Double parton scattering	KaTie	$\psi[1S] + \psi[1S]$	$\psi[1S] + \psi[2S]$	Conclusions	Backup
0	000	000	0	•	0000	000	0	0000

KaTie

There are two ways to perform calculations in the PRA:

- Semi-analytic with ReggeQCD_[Nefedov '16] + numerical integration (f.e., with CUBA_[Hahn '15] library):
 - The Feynman rules of Lipatov's EFT up to the order

$$O(e^n g_S^m), \qquad n+m \leq 4$$

are implemented in ReggeQCD model-file for the FeynArts package;

The complete set of $c\bar{c}c\bar{c}$ production diagrams in Lipatov's EFT is about 72–too much for analytical calculations.

- Fully numerical with KaTie_[Hameren '18]:
 - Fully numerical method for calculating gauge invariant amplitudes with off-shell initial states based on spinor amplitudes formalism and recurrence relations of the Britto-Cachazo-Feng-Witten (BCFW) type;
 - Order of diagrams up to:

$$O(e^n g_S^m), \qquad n+m \le 4$$

- Collinear PDF sets from LHAPDF;
- uPDF sets from TMDlib and from own grid files;
- Opportunities to study multipartonic interactions.

These two methods are equivalent at the stage of numerical calculations [Nefedov, Shipilova, and Saleev].

Introduction	Parton Reggeization Approach	Quarkonium production	Double parton scattering	KaTie	$\psi[1S] + \psi[1S]$	$\psi[1S] + \psi[2S]$	Conclusions	Backup
0	000	000	0	0	0000	000	0	0000

Associated $\psi[1S] + \psi[1S]$

To extract $\mathcal{F}^{\psi\psi}$ and σ_{eff} we perform fit with two free parameters:

$$\sigma(\mathcal{F}^{\psi\psi}, \sigma_{eff}) = \sigma^{SPS}(\mathcal{F}^{\psi\psi}) + \sigma^{DPS}(\mathcal{F}^{\psi}, \sigma_{eff})$$

while \mathcal{F}^{ψ} is fixed in inclusive production.

Black isolines corresponds to the previous extracted value and blue to the new one:

$$\sigma_{eff} \simeq 11.0 \text{ mb} \quad \lor \quad \sigma_{eff} \simeq 11.5 \text{ mb},$$

within the hard scale variatian, this two values are equivalent, and at high energies we obtain:

$$\mathcal{F}^{\psi\psi}\simeq \mathcal{F}^{\psi}$$

Introduction	Parton Reggeization Approach	Quarkonium production	Double parton scattering	KaTie	$\psi[1S] + \psi[1S]$	$\psi[1S] + \psi[2S]$	Conclusions	Backup
0	000	000	0	0	0000	000	0	0000

 $\text{LO PRA} + \text{NRQCD} \quad \lor \quad \text{NLO}^{\star} \text{ CPM} + \text{CSM} \quad \lor \quad \text{LO PRA} + \text{ICEM}$

Figure 2: The left plot is from [Aaij et.al. /23].

Predictions in LO PRA+NRQCD and CSM+NLO* CPM are performed only taking into account the SPS contribution!

Introduction	Parton Reggeization Approach	Quarkonium production	Double parton scattering	KaTie	$\psi[1S] + \psi[1S]$	$\psi[1S] + \psi[2S]$	Conclusions	Backuj
0	000	000	0	0	0000	000	0	0000

$\text{NLO}^{\star} \operatorname{CPM} + \operatorname{CSM} \quad \lor \quad \text{LO PRA} + \text{ICEM}$

Figure 3: The left plot is from_[Aaij et.al. /23].

Predictions in CSM+NLO* CPM are performed only taking into account the SPS contribution!

Introduction	Parton Reggeization Approach	Quarkonium production	Double parton scattering	KaTie	$\psi[1S] + \psi[1S]$	$\psi[1S] + \psi[2S]$	Conclusions	Backup
0	000	000	0	0	0000	000	0	0000

$\text{NLO}^{\star} \text{ CPM} + \text{CSM} \quad \lor \quad \text{LO PRA} + \text{ICEM}$

Figure 4: The left plot is from [Aaij et.al. /23].

Predictions in CSM+NLO* CPM are performed only taking into account the SPS contribution!

Introduction	Parton Reggeization Approach	Quarkonium production	Double parton scattering	KaTie	$\psi[1S] + \psi[1S]$	$\psi[1S] + \psi[2S]$	Conclusions	Backup
0	000	000	0	0	0000	000	0	0000

Based on previous results, we can choose upper value as $\mathcal{F}^{\psi\psi'} \simeq \mathcal{F}^{\psi'}$, which corresponds to the *maximum* contribution of the SPS mechanism, while the DPS contribution is fixed due to fixed parameters.

 $\text{LO PRA} + \text{NRQCD} \quad \lor \quad \text{NLO}^{\star} \text{ CPM} + \text{CSM} \quad \lor \quad \text{LO PRA} + \text{ICEM}$

Figure 5: The left plot is from [Aaij et.al. /23].

Predictions in LO PRA+NRQCD and CSM+NLO* CPM are performed only taking into account the SPS contribution!

Introduction	Parton Reggeization Approach	Quarkonium production	Double parton scattering	KaTie	$\psi[1S] + \psi[1S]$	$\psi[1S] + \psi[2S]$	Conclusions	Backup
0	000	000	0	0	0000	000	0	0000

$\text{NLO}^{\star} \operatorname{CPM} + \operatorname{CSM} \quad \lor \quad \text{LO PRA} + \text{ICEM}$

Figure 6: The left plot is from_[Aaij et.al. /23].

Predictions in CSM+NLO* CPM are performed only taking into account the SPS contribution!

Introduction	Parton Reggeization Approach	Quarkonium production	Double parton scattering	KaTie	$\psi[1S] + \psi[1S]$	$\psi[1S] + \psi[2S]$	Conclusions	Backup
0	000	000	0	0	0000	000	0	0000

 $\text{NLO}^{\star} \text{ CPM} + \text{CSM} \quad \lor \quad \text{LO PRA} + \text{ICEM}$

Figure 7: The left plot is from_[Aaij et.al. /23].

Predictions in CSM+NLO* CPM are performed only taking into account the SPS contribution!

Introduction	Parton Reggeization Approach	Quarkonium production	Double parton scattering	KaTie	$\psi[1S] + \psi[1S]$	$\psi[1S] + \psi[2S]$	Conclusions	Backup
0	000	000	0	0	0000	000	•	0000

Conclusions

- Working in the LO PRA and ICEM, taking into account the SPS and the DPS mechanisms, we have obtained self agreement description of the pair $\psi[1S] + \psi[1S]$ and $\psi[1S] + \psi[2S]$, associated Q[1S] + D and $\psi[1S] + Z/W$ productions;
- In this study, we confirm early obtained numerical values for parameters of the ICEM, $\mathcal{F}^{\psi} \simeq 0.02$ and the DPS pocket formula, $\sigma_{\text{eff}} \simeq 11$ mb, and extracted one new $\mathcal{F}^{\psi'} \simeq 0.06$;
- We found the contribution of the DPS to be dominant over the SPS one in the LHCb experiment kinematics in the pair charmonia production processes, such that:

 $R_{\psi[1S]\psi[1S]} \simeq 0.3, \qquad R_{\psi[1S]\psi[2S]} \simeq 0.2$

• The absence of hierarchy between ICEM hadronization factors $\mathcal{F}^{\psi[1S]}$ and $\mathcal{F}^{\psi[2S]}$ does not affect the processes of associated $\psi[1S] + \psi[2S]$ production;

For details see Phys.Rev.D 106 (2022) 11, 114006.

Thank you for your attention!

Introduction	Parton Reggeization Approach	Quarkonium production	Double parton scattering	KaTie	$\psi[1S] + \psi[1S]$	$\psi[1S] + \psi[2S]$	Conclusions	Backup
0	000	000	0	0	0000	000	0	•000

Modified Kimber-Martin-Ryskin-Watt uPDF

We follow the standard definition of uPDF in BFKL formalism:

$$\int_{0}^{\mu^{2}} dt \, \Phi_{i}(x,t,\mu^{2}) = F_{i}(x,\mu^{2}) \qquad \Longleftrightarrow \qquad \boxed{\Phi_{i}(x,t,\mu^{2}) = \frac{d}{dt} \left[T_{i}(t,\mu^{2},x) \times F_{i}(x,t)\right],}$$

where $F_i(x, \mu^2) = x f_i(x, \mu^2)$ and $T_i(t, \mu^2, x)$ is a usually reffered as a *Sudakov formfactor*, satysfying boundary conditions:

$$T_i(t=0,\mu^2,x)=0$$
 and $T_i(t=\mu^2,\mu^2,x)=1$.

► SUDAKOV FORMFACTOR REGULARIZES COLLINEAR DIVERGENCES.

(Modified) Kimber–Martin–Ryskin–Watt (MKMRW)_[KMR '01; MRW '03] prescription to obtain uPDF from collinear one is based on the mechanism of *last step evolution* (final k_T –dependent parton radiation) and strong angular ordering:

$$\Phi_i(x,t,\mu^2) = \frac{\alpha_s(\mu)}{2\pi} \frac{T_i(t,\mu^2,x)}{t} \times \sum_j \int_x^1 dz \, P_{ij}(z) \, F_j\left(\frac{x}{z},t\right) \times \boldsymbol{\theta}\left(\Delta(t,\mu)-z\right),$$

where $\Delta(t,\mu) = \mu/(\mu + \sqrt{t})$ is a *KMR–cutoff function* which ensures *rapidity ordering of the last emitted parton and particles produced in the hard process.*

► KMR-cutoff $\Delta(t, \mu)$ regularizes IR-divergences.

Introduction	Parton Reggeization Approach	Quarkonium production	Double parton scattering	KaTie	$\psi[1S] + \psi[1S]$	$\psi[1S] + \psi[2S]$	Conclusions	Backup
0	000	000	0	0	0000	000	0	0000

Modified Kimber-Martin-Ryskin-Watt uPDF

The solution for Sudakov formfactor[Nefedov and Saleev '20]:

$$T_{i}(t,\mu^{2},x) = \exp\left[-\int_{t}^{\mu^{2}} \frac{dt'}{t'} \frac{\alpha_{S}(t')}{2\pi} \left(\tau_{i}(t',\mu^{2}) + \Delta\tau_{i}(t',\mu^{2},x)\right)\right],$$

with

$$\begin{split} \tau_i(t,\mu^2) &= \sum_j \int_0^1 dz \, z P_{ji}(z) \theta(\Delta(t,\mu^2) - z), \\ \Delta \tau_i(t,\mu^2,x) &= \sum_j \int_0^1 dz \, \theta(z - \Delta(t,\mu^2)) \left[z P_{ji}(z) - \frac{F_j\left(\frac{x}{z},t\right)}{F_i(x,t)} P_{ij}(z) \theta(z - x) \right]. \end{split}$$

Conclusion: PRA smoothly interpolates QCD predictions between high–energy and low–energy regions as well as between small– p_T and large– p_T of final particles and allows us to study processes described non–Abelian QCD structures.

Previously, PRA was used to describe production of: dijets, diphotons, open beauty / charm $B\bar{B}/D\bar{D}$, Drell–Yan pairs, pair J/ψ , and many more... (see [Nefedov, Saleev, et.al.])

Introduction	Parton Reggeization Approach	Quarkonium production	Double parton scattering	KaTie	$\psi[1S] + \psi[1S]$	$\psi[1S] + \psi[2S]$	Conclusions	Backup
0	000	000	0	0	0000	000	0	0000

Pair charmonia production in the ICEM

Cross section for pair heavy quarkonia $Q[(q\bar{q})] + Q'[(q\bar{q})']$ production in the ICEM:

$$d\sigma_{QQ'} = \mathcal{F}^{QQ'} \times \int_{M_Q}^{2M_H} dM \int_{M_{Q'}}^{2M_{H'}} dM' \ \frac{d\sigma_{(q\bar{q})(q\bar{q})'}}{dM \ dM'}$$

But how \mathcal{F}^{Q} , $\mathcal{F}^{Q'}$, and $\mathcal{F}^{QQ'}$ parameters are related? Since that $r_{Q[1S]} \sim 0.3$ FM, they cannot hadronize independent at characteristic distance 1 FM.

According to the principle of quantum identity, $(q\bar{q})_{\rm f}$ and $(q\bar{q})'_{\rm f'}$ pairs hadronize in two different ways:

• The flavours are different $f \neq f'$:

$$\mathcal{F}^{\mathcal{Q}\mathcal{Q}'} = \mathcal{F}^{\mathcal{Q}} \times \mathcal{F}^{\mathcal{Q}'}$$

• The flavours are the same f = f':

$$\mathcal{F}^{QQ} \neq \mathcal{F}^{Q} \times \mathcal{F}^{Q}$$

These relations were numerically checked in [A.C. and Saleev '22,23].

Introduction	Parton Reggeization Approach	Quarkonium production	Double parton scattering	KaTie	$\psi[1S] + \psi[1S]$	$\psi[1S] + \psi[2S]$	Conclusions	Backup
0	000	000	0	0	0000	000	0	0000

Hard multipartonic interactions

Standard approach to study multi-particle production is to use so called single parton scattering (SPS):

$$d\sigma_{\mathcal{H}\mathcal{H}'}^{\text{SPS}} = \sum_{i,j} \int dx_1 dx_2 \left[f_i(x_1, \mu^2) \times f_j(x_2, \mu^2) \right] \times d\hat{\sigma}_{ij \to \mathcal{H}\mathcal{H}'}(x_1, x_2)$$

But the proton is a composite system, so double parton scattering (DPS) is possible:

$$d\sigma_{\mathcal{H}\mathcal{H}'}^{\text{DPS}} = \frac{1}{1 + \delta_{\mathcal{H}\mathcal{H}'}} \sum_{i,j,k,l} \int dx_1 dx_2 dx_1' dx_2' d^2 \mathbf{b}_1 d^2 \mathbf{b}_2 d^2 \mathbf{b} \big[\Gamma_{ij}(x_1, x_2, \mu_1^2, \mu_2^2; \mathbf{b}_1, \mathbf{b}_2) \times \Gamma_{kl}(x_1', x_2', \mu_1^2, \mu_2^2; \mathbf{b}_1', \mathbf{b}_2') \big] \\ \times \big[d\hat{\sigma}_{ik \to \mathcal{H}}(x_1, x_1', \mu_1^2) \times d\hat{\sigma}_{jl \to \mathcal{H}'}(x_2, x_2', \mu_2^2) \big],$$

here Γ_{ij} are generalized double parton distribution functions (dPDF's), \mathbf{b}_i -distances in transverse plane.

Standard assumptions for phenomenological study:

• Generalized dPDF's decomposition:

$$\Gamma_{ij}(x_1, x_2, \mu_1^2, \mu_2^2; \mathbf{b}_1, \mathbf{b}_2) = D_{ij}(x_1, x_2, \mu_1^2, \mu_2^2) \times f(\mathbf{b}_1) f(\mathbf{b}_2),$$

$$\int d^2 \mathbf{b}_i d^2 \mathbf{b} f(\mathbf{b}_i) f(\mathbf{b}_i - \mathbf{b}) = \int d^2 \mathbf{b} T(\mathbf{b}) = 1$$

• dPDF's factorization in terms of PDF's:

 $D_{ij}(x_1, x_2, \mu_1^2, \mu_2^2) = f_i(x_1, \mu_1^2) \times f_j(x_2, \mu_2^2), \quad \boldsymbol{\sigma}_{\text{eff}} = \left[\int d^2 \mathbf{b} \ T^2(\mathbf{b})\right]^{-1} - \text{ where a starting of the set o$

▶ σ_{eff} is a free parameter, extracted values are very different $\sigma_{\text{eff}} \in [2, 25]$ mb.