

Анизотропные потоки и корреляционная фемтоскопия в Au+Au столкновениях при энергиях 14,5 и 39 ГэВ в модели EPOS4

Алексей Поваров НИЯУ МИФИ

Научная сессия секции ядерной физики ОФН РАН Дубна, 1 - 5 Апреля 2024 г.

Анизотропные потоки и корреляционная фемтоскопия

- **v**_n(**p**_T, **centrality)** чувствителен к ранним стадиям столкновения
- Можно извлечь ограничения на транспортные свойства: EOS, η/s, ζ/s
- Поток лёгких адронов больше потока тяжёлых при одном и том же значении поперечного импульса при p_т < 2 ГэВ/с
- Корреляционная фемтоскопия позволяет определить структуру области испускания частиц

Цель: изучение эллиптического и треугольного потоков заряженных частиц (пионов, каонов, (анти)протонов) и размеров области испускания пионов при √s_{NN} 14.5 и 39 ГэВ в модели EPOS4

Датасет

Au+Au 14.5 ГэВ: ~2.29 миллиона событий Au+Au 39 ГэВ: ~1.1 миллион событий

- пионы, каоны и (анти)протоны
- 0.15 < p < 3.0 ГэВ/с
- 0.15 < p_т < 2.0 ГэВ/с (для плоскости реакции)
- |η| < 1.0
- |Δη| < 0.05

Центральность:

b, фм	0 - 3.3	3.3 - 4.7	4.7 - 6.6	6.6 - 8.1	8.1 - 9.4	9.4 - 10.5	10.5 - 11.5	11.5 - 12.4	12.4 - 13.2
cent, %	0 - 5	5 - 10	10 - 20	20 - 30	30 - 40	40 - 50	50 - 60	60 - 70	70 - 80

http://web-docs.gsi.de/~misko/overlap/interface.html

Азимутальные потоки π⁻ при энергии столкновения 39 ГэВ

Проблема с воспроизведением экспериментальных данных ⇒ более жесткий отбор пионов Треугольный поток не зависит от центральности столкновения ⇒ другая природа

Азимутальные потоки К* при энергии столкновения 39 ГэВ

Треугольный поток не зависит от центральности столкновения ⇒ другая природа

Азимутальные потоки антипротонов при энергии столкновения 39 ГэВ

Треугольный поток не зависит от центральности столкновения ⇒ другая природа

6

Азимутальные потоки π⁺ при энергии столкновения 14.5 ГэВ

Проблема с воспроизведением экспериментальных данных ⇒ более жесткий отбор пионов Треугольный поток не зависит от центральности столкновения ⇒ другая природа

Азимутальные потоки К- при энергии столкновения 39 ГэВ

Треугольный поток не зависит от центральности столкновения ⇒ другая природа

Азимутальные потоки протонов при энергии столкновения 39 ГэВ

Треугольный поток не зависит от центральности столкновения ⇒ другая природа

9

Координаты фризаута **π**⁺ при √s_№ = 14.5 ГэВ

Зависимость **τ** от поперечного радиуса фризаута для **π**⁺ при √s_№ = 14.5 ГэВ

Координаты фризаута π[⁺] при √s_{NN} = 39 ГэВ

Зависимость **т** от поперечного радиуса фризаута для **π**⁺ при √s_№ = 39 ГэВ

13

Заключение

Были представлены результаты измерения v_2 , v_3 заряженных частиц и размеров области испускания пионов в столкновениях золота при √s_{NN} = 14.5 и 39 ГэВ в модели EPOS4:

- Данная модель воспроизводит эллиптический поток, согласующийся с экспериментальными данными
- Треугольный поток не имеет зависимости от центральности как эллиптический поток
- Мягкие частицы испускаются со всего объёма

Азимутальные потоки при энергии столкновения 39 ГэВ

Азимутальные потоки π' при энергии столкновения 39 ГэВ

Проблема с воспроизведением экспериментальных данных ⇒ более жесткий отбор пионов Треугольный поток не зависит от центральности столкновения ⇒ другая природа

Азимутальные потоки π⁻ при энергии столкновения 39 ГэВ

Проблема с воспроизведением экспериментальных данных ⇒ более жесткий отбор пионов Треугольный поток не зависит от центральности столкновения ⇒ другая природа

Азимутальные потоки К* при энергии столкновения 39 ГэВ

Треугольный поток не зависит от центральности столкновения ⇒ другая природа

Азимутальные потоки К- при энергии столкновения 39 ГэВ

Треугольный поток не зависит от центральности столкновения ⇒ другая природа

Азимутальные потоки протонов при энергии столкновения 39 ГэВ

20

Азимутальные потоки антипротонов при энергии столкновения 39 ГэВ

Треугольный поток не зависит от центральности столкновения ⇒ другая природа

21

Азимутальные потоки при энергии столкновения 14.5 ГэВ

Азимутальные потоки π⁺ при энергии столкновения 14.5 ГэВ

Проблема с воспроизведением экспериментальных данных ⇒ более жесткий отбор пионов Треугольный поток не зависит от центральности столкновения ⇒ другая природа

Азимутальные потоки π⁻ при энергии столкновения 14.5 ГэВ

Проблема с воспроизведением экспериментальных данных ⇒ более жесткий отбор пионов Треугольный поток не зависит от центральности столкновения ⇒ другая природа

Азимутальные потоки К⁺ при энергии столкновения 14.5 ГэВ

Треугольный поток не зависит от центральности столкновения ⇒ другая природа

Азимутальные потоки К- при энергии столкновения 39 ГэВ

Треугольный поток не зависит от центральности столкновения ⇒ другая природа

Азимутальные потоки протонов при энергии столкновения 39 ГэВ

Треугольный поток не зависит от центральности столкновения ⇒ другая природа

27

Азимутальные потоки антипротонов при энергии столкновения 39 ГэВ

Треугольный поток не зависит от центральности столкновения ⇒ другая природа

28

Y(X) π[⁺] для центральности 0-10% при √s_{NN} = 39 ГэВ

Y(X) π⁺ для центральности 10-40% при √s_№ = 39 ГэВ

R(т) vs т π⁺ для центральности 0-10% при √s_{NN} = 39 ГэВ

R(т) vs т π⁺ для центральности 10-40% при √s_{NN} = 39 ГэВ

Y(X) π[⁺] для центральности 0-10% при √s_№ = 14.5 ГэВ

Y(X) π[⁺] для центральности 10-40% при √s_№ = 14.5 ГэВ

R(т) vs т π⁺ для центральности 0-10% при √s_№ = 14.5 ГэВ

R(т) vs т π[⁺] для центральности 10-40% при √s_{NN} = 14.5 ГэВ

