Азимутальные потоки протонов в эксперименте BM@N

Mikhail Mamaev (JINR, MEPhI) Arkady Taranenko (MEPhI, JINR) Timofei Kuimov (MEPhI)

This work is supported by: RSF grant No. 22-12-00132

Научная сессия секции ядерной физики ОФН РАН, 01/04/2024

Anisotropic flow & spectators

The azimuthal angle distribution is decomposed in a Fourier series relative to reaction plane angle:

$$arphi(arphi-\Psi_{RP})=rac{1}{2\pi}(1+2\sum_{n=1}^\infty v_n\cos n(arphi-\Psi_{RP}))$$
Anisotropic flow:

$$v_n = \langle \cos \left[n (arphi - \Psi_{RP})
ight]
angle$$

Anisotropic flow is sensitive to:

- Time of the interaction between overlap region and spectators
- Compressibility of the created matter

Discrepancy is probably due to non-flow correlations

Describing the high-density matter using the mean field Flow measurements constrain the mean field

HADES: dv_1/dy scaling with collision energy and system size

- Scaling with collision energy is observed in model and experimental data
- Scaling with system size is observed in model and experimental data
- We can compare the results with HIC-data from other experiments(e.g. STAR-FXT Au+Au

dv_1/dy as a function of centrality

Weak centrality dependence for directed flow

The BM@N experiment (GEANT4 simulation for RUN8)

Identification procedure

- Mass squared distribution is fitted in narrow bins of p/q
- Protons, pions, deuterons, tritons and helium are fitted

Purity is the function showing possible contamination

$$p_i(m^2, p/q) = \frac{f_i(m^2, p/q)}{\sum_{i=1}^N f_i(m^2, p/q)}$$

Centrality and particle selection

- Whole recent VF production was analysed
- Event selection criteria (~100M events selected)
 - Central trigger
 - Number tracks for vertex > 1
- Track selection criteria : $\chi^2 < 5$; $M_p^2 \sigma < m^2 < M_p^2 + \sigma$; Nhits > 5

Flow vectors

From momentum of each measured particle define a u_n -vector in transverse plane:

$$u_n=e^{in\phi}$$

where $\boldsymbol{\phi}$ is the azimuthal angle

Sum over a group of u_n -vectors in one event forms Q_n -vector:

$$Q_n = rac{\sum_{k=1}^N w_n^k u_n^k}{\sum_{k=1}^N w_n^k} = |Q_n| e^{in \Psi_n^{EP}}$$

 $\Psi_{n}^{\ \text{EP}}$ is the event plane angle

Flow methods for v_n calculation

Tested in HADES:

M Mamaev et al 2020 PPNuclei 53, 277–281 M Mamaev et al 2020 J. Phys.: Conf. Ser. 1690 012122

Scalar product (SP) method:

$$v_1 = rac{\langle u_1 Q_1^{F1}
angle}{R_1^{F1}} \qquad v_2 = rac{\langle u_2 Q_1^{F1} Q_1^{F3}
angle}{R_1^{F1} R_1^{F3}}$$

Where R_1 is the resolution correction factor

$$R_1^{F1}=\langle \cos(\Psi_1^{F1}-\Psi_1^{RP})
angle$$

Symbol "F2(F1,F3)" means R₁ calculated via (3S resolution):

$$R_1^{F2(F1,F3)} = rac{\sqrt{\langle Q_1^{F2}Q_1^{F1}
angle \langle Q_1^{F2}Q_1^{F3}
angle}}{\sqrt{\langle Q_1^{F1}Q_1^{F3}
angle}}$$

Method helps to eliminate non-flow Using 2-subevents doesn't

Symbol "F2{Tp}(F1,F3)" means R₁ calculated via (4S resolution):

$$R_1^{F2\{Tp\}(F1,F3)} = \langle Q_1^{F2}Q_1^{Tp}
angle rac{\sqrt{\langle Q_1^{F1}Q_1^{F3}
angle}}{\sqrt{\langle Q_1^{Tp}Q_1^{F1}
angle \langle Q_1^{Tp}Q_1^{F3}
angle}}$$

Azimuthal asymmetry of the BM@N acceptance

11

Resolution is lower for higher energies due to lower v₁

F3

Directed and elliptic flow in Xe+Cs (JAM)

Good agreement between reconstructed and pure model data for all three energies

Symmetry plane resolution in Xe+Cs(I) collisions

All the estimations for symmetry plane resolution are in a good agreement

Summary

- Resolution correction factor is calculated for DCMQGSM-SMM Xe+Cs collisions at beam energies of 4A, 3A and 1.5A GeV:
 - Using only FHCal sub-events for resolution calculation gives biased estimation due to transverse hadronic showers propagation
 - Using additional sub-events from tracking provides with a robust estimation
- Good agreement between model and reconstructed data is observed for v_1 and v_2 at 2A, 3A and 4A GeV

Backup

Proton identification

Proton candidates were selected with fitting the m^2 vs p\q

Selection criteria: <m>±2*o*

Deutron identification

Proton candidates were selected with fitting the m^2 vs p\q

Selection criteria: <m>±2*o*

Positive pions identification

Proton candidates were selected with fitting the m² vs p\q

Selection criteria: <m>±2*o*

Centrality with MC-Glauber for RUN8

Proton p_T -y acceptance

Deutron p_{T} -y acceptance

Positive pion p_T -y acceptance

New layout for fhcal Q-vectors

