Новые результаты исследования релятивистских ядерных взаимодействий в пространстве четырехмерных скоростей

А.И. Малахов*

Научная сессия секции ядерной физики Отделения физических наук
Российской академии наук и Объединенного институт ядерных исследований, посвященная 300-летию Российской академии наук.

Дубна, 2 апреля 2024 г.

* Совместно с Г.И. Лыкасовым и А.А. Зайцевым

$\mathrm{I}+\mathrm{II} \rightarrow \mathbf{1 +}$...

$\left(N_{I} P_{I}+N_{I I} P_{I I}-p_{1}\right)^{2}=\left(N_{I} m_{0}+N_{I I} m_{0}+M\right)^{2}$
$\boldsymbol{N}_{\boldsymbol{l}}$ and $\boldsymbol{N}_{\boldsymbol{I}}$ are the part of the transferred
four-momenta of nucleons participating in nuclei I and II.
\boldsymbol{M} is the mass of the particle providing conservation of quantum numbers.

For antinuclei and K^{-}mesons $\mathrm{M}=\mathrm{m}_{1}$, for nuclear fragments $\mathrm{M}=-\mathrm{m}_{1}$. For K^{+}mesons $\mathrm{M}=\mathrm{m}_{\Lambda}-\mathrm{m}_{0}$. For the particles produced without accompanying antiparticles (π mesons) $\mathrm{M}=0$.
A.M. Baldin, A.A. Baldin.Phys. Particles and Nuclei, 29(3), 1998, 232

$$
I+\| \rightarrow 1+\ldots
$$

$$
\Pi=\min \frac{1}{2} \sqrt{\left(U_{1} N_{l}+U_{I I} N_{I I}\right)^{2}}
$$

u_{1} and $u_{\| \mid}$are four velocities of the nuclei I and II.
$E d^{3} \sigma / d p^{3}=C_{1} A_{1}{ }^{\alpha(N I)} \cdot A_{I I}{ }^{\alpha}{ }^{(N I I)} \cdot \exp \left(-\Pi / C_{2}\right)$
A.M. Baldin, A.I. Malakhov. Relativistic Multiparticle Processes in the Central Rapidity Region at Asimptotically High Energies. JINR Rapid Communications, 1 [87]-98 (1998) 5-12.

An analytical solution has been obtained for the similarity parameter in the central rapidity region $(y=0)$:

Similarity ParameterRapidity of interacting nuclei four-momentum

(The Baldin-Malakhov equation)

In the mid-rapidity region ($y=0, y$ is the rapidity of particle 1) the analytical form for Π was found:

$\Pi=\mathrm{N} \cdot \mathrm{Ch} \mathrm{Y}$

In this case \mathbf{N}_{1} and $\mathbf{N}_{\|}$are equal to each other: $\mathbf{N}_{1}=\mathbf{N}_{\|}=\mathbf{N}$.

$$
N=\left[1+\left(1+\Phi_{M} / \Phi^{2}\right)^{1 / 2}\right] \Phi
$$

where

$$
\begin{aligned}
& \Phi=2 m_{0}\left(m_{1 t} \operatorname{chY}+M\right) / s^{2} Y, \\
& \Phi_{M}=\left(M^{2}-m^{2}{ }_{1}\right) /\left(4 m^{2}{ }_{0} \cdot s^{2} h^{2} Y\right)
\end{aligned}
$$

$m_{1 t}=\left(m_{1}^{2}+p_{t}{ }^{2}\right)^{1 / 2}$,
Y - rapidity of interacting nuclei.

$$
\begin{aligned}
& E \cdot\left(d^{3} \sigma / d p^{3}\right)=(1 / \pi) d^{3} \sigma /\left(d m_{1 t}^{2} d y\right)= \\
& =\left[\varphi_{q}\left(y, p_{t}\right)+\varphi_{g}\left(y, p_{t}\right) \cdot\left(1-\sigma_{n d} / g\left(s / s_{0}\right)^{4}\right)\right] \cdot g\left(s / s_{0}\right)^{\Delta}
\end{aligned}
$$

$\sigma_{\text {nd }}$ - cross-section of hadron production by the exchange of n-pomerons.
g - constant ($\sim 20 \mathrm{mbarn}$), $\mathrm{S}_{0} \sim 1 \mathrm{GeV}^{2}$, $\Delta=\left[\alpha_{p}(0)-1\right] \sim 0,08$
G.I.Lykasov proposed to use functions depending on the similarity parameter Π as
 functions $\varphi\left(\mathrm{y}, \mathrm{p}_{\mathrm{t}}\right)$:

$$
\text { G. Lykasov } \rightarrow \varphi=\varphi(\Pi)
$$

Ratio of antiparticle to particle yields

$\begin{aligned} & \text { For nuclei and nuclear } \\ & \text { fragments } M=-m_{1}\end{aligned} \quad \longrightarrow \quad \Pi_{1}=\left[\frac{m_{1 T}}{m_{0}} \operatorname{chY}-\frac{m_{1}}{m_{0}}\right] \frac{\operatorname{chY}}{\mathbf{s h}^{2} Y}$

In case of symmetric nuclei $\left(A_{1}=A_{11}=A\right)$ the above relation takes the following form:

$$
\text { Ratio }\left(\frac{\text { antibaryon }}{\text { baryon }}\right)=A^{\frac{4}{3} \frac{m_{1}}{m_{0}} \frac{1}{s^{2} Y}} \cdot \exp \left(-\frac{2 \frac{m_{1}}{m_{0}} \cdot \frac{c h Y}{s h^{2} Y}}{C_{2}}\right) .
$$

If $A_{1}=A, A_{\|}=B$, then

$$
\text { Ratio }\left(\frac{\text { antibaryon }}{\text { baryon }}\right)=(A \cdot B)^{\frac{2}{3} \frac{m_{1}}{m_{0}} \frac{1}{s h^{2} Y}} \cdot \exp \left(-\frac{2}{C_{2}} \frac{m_{1}}{m_{0}} \cdot \frac{c h Y}{s h^{2} Y}\right) .
$$

Description of the yield ratios of anti-p/p with one value of constant $\mathrm{C}_{2}=0.146$ taking into account $\mathrm{dY}(\mathrm{Y})$ dependences.

The dependence of the rapidity loss of $d Y$ on the rapidity of Y . The dotted lines are linear approximations of $d Y(Y)=p 0+p 1 \cdot Y$.

Description of the yield ratios of anti-d/d, anti- $\mathrm{He}^{3} / \mathrm{He}^{3}$ with one value of constant $\mathrm{C}_{2}=0.146$.
> A.I. Malakhov and A.A. Zaitsev. Journal of Experimental and Theoretical Physics, 2022, Vol. 135, No. 2, pp. 209-214.

Description of the spectra of secondary particles depending on P_{T} in a wide range of energies

Using relativistic invariant variables s, p_{t} and $c h(Y)=\sqrt{ } s / 2 m_{0}$ dependence we have obtained the following form for Π :

$$
\begin{aligned}
& \Pi=\left\{\frac{m_{1 t}}{2 m_{0} \delta}+\frac{M}{\sqrt{s} \delta}\right\}\left\{1+\sqrt{1+\frac{M^{2}-m_{1}^{2}}{m_{1 t}^{2}} \delta}\right\} \\
& \delta=1-4 m_{0}^{2} / s, \quad m_{t}^{2}=p_{t}^{2}+m_{l}^{2} \uparrow \\
& \text { Baldin-Malakhov-Lykasov equation }
\end{aligned}
$$

At large $\sqrt{s} \gg 1 \mathrm{GeV}$:
$\Pi=\frac{m_{1 t}}{2 m_{0}\left(1-4 m_{0}^{2} / s\right)}\left\{1+\sqrt{1+\frac{M^{2}-m_{1}^{2}}{m_{1 t}^{2}}\left(1-4 m_{0}^{2} / s\right)}\right\}$
G.I. Lykasov, A.I. Malakhov. Self-consistent analysis of hadron production in pp and AA collisions at mid-rapidity. Eur.Phys. J. A54, 187 (2018).

For π-mesons at $p_{t}{ }^{2} \gg \mathrm{~m}_{1}{ }^{2}$:

$$
\Pi \simeq \frac{m_{1 t}}{m_{0}\left(1-4 m_{0}^{2} / s\right)}
$$

$E \cdot\left(d^{3} \sigma / d p^{3}\right)=(1 / \pi) d^{3} \sigma /\left(\mathrm{dm}_{1 t^{2}}{ }^{2} d y\right)=$
 $=\left[\varphi_{q}\left(y, p_{t}\right)+\varphi_{g}\left(y, p_{t}\right) \cdot\left(1-\sigma_{n d} / g\left(s / s_{0}\right)^{\Delta}\right)\right] \cdot g\left(s / s_{0}\right)^{\Delta}$

$\sigma_{n d}-$ cross-section of hadron production by the exchange of n pomerons.
g - constant ($\sim 20 \mathrm{mbarn}$), $\mathrm{S}_{0} \sim 1 \mathrm{GeV}^{2}$,
$\Delta=\left[\alpha_{p}(0)-1\right] \sim 0,08$
G.I.Lykasov proposed to use functions depending on the similarity parameter Π as functions $\varphi\left(\mathrm{y}, \mathrm{p}_{\mathrm{t}}\right)$:
G. Lykasov $\rightarrow \varphi=\varphi(\Pi)$

The first part of inclusive spectrum (Soft QCD (quarks)) is related to the function $\phi_{q}(y=0, \Pi)$, which is fitted by the following form [*]:

$$
\begin{gathered}
\phi_{q}(y=0, \Pi)=A_{q} \exp \left(-\Pi / C_{q}\right) \\
\text { where } A_{q}=3.68(\mathrm{GeV} / \mathrm{c})^{-2}, C_{q}=0.147
\end{gathered}
$$

The function $\phi_{g}(y=0, \Pi)$ related to the second part (Soft QCD (gluons)) of the spectrum is fitted in the following form [*]:

$$
\begin{aligned}
& \quad \phi_{g}(y=0, \Pi)=A_{g} \sqrt{m_{1 t}} \exp \left(-\Pi / C_{g}\right) \\
& \text { where } A_{g}=1.7249(G e V / c)^{-2}, C_{g}=0.289
\end{aligned}
$$

[*] V. A. Bednyakov, A. A. Grinyuk, G. I. Lykasov, M. Pogosyan. Int.J.Mod.Phys., A27 (2012) 1250042.

DESCRIPTION OF p_{t} SPECTRA OF PIONS AND KAONS IN BeBe COLLISIONS

G. I. Lykasov, A. I. Malakhov, A. A. Zaitsev. Ratio of kaon-topion production cross-sections in BeBe collisions as a function of $\sqrt{ }$ s. Eur. Phys. J. A (2022) 58:112

Energy dependence of the slope parameter on energy

$\mathbf{E}\left(\mathbf{d}^{3} \sigma / \mathbf{d p}^{3}\right) \sim \exp \left(-\mathrm{m}_{\mathrm{t}} / \mathbf{T}\right), \mathbf{T}=$ Const

$$
E\left(d^{3} \sigma / d p^{3}\right) \sim \exp \left(-\Pi / C_{2}\right)=\exp \left(-m_{1 t} /\left[C_{2} m_{0}\left(1-4 m_{0}{ }^{2} / s\right)\right]\right.
$$

G.I. Lykasov, A.I. Malakhov. Self-consistent analysis of hadron production in pp and AA collisions at mid-rapidity. Eur.Phys.J.A 54 (2018) 11, 187.

The ratio of the strange kaon yield to the pion yield

Ratios of kaons to pions in $p p$ collisions as functions of \sqrt{s}

BMLZ - Baldin-Malakhov-Lykasov-Zaitsev model.
G.I. Lykasov, A.I. Malakhov, A.A. Zaitsev. Ratio of crosssections of kaons to pions produced in pp collisions as a function of $\sqrt{ }$ s. Eur.Phys.J.A 57 (2021) 3, 91.

Ratios of kaons to pions as functions of $\sqrt{\boldsymbol{s}}$

BLMZ model:
Lykasov, G.I., Malakhov, A.I. and Zaitsev, A.A. Ratio of kaon-topion production cross-sections in BeBe collisions as a function of $\sqrt{ }$ s. Eur. Phys. J. A 58, 112 (2022).

G.I. Lykasov, A.I. Malakhov and A.A. Zaitsev. Production of charged kaons in ArSc collisions. http://arxiv.org/abs/2402.03260

Description of the particle yield depending on their rapidity

A.I. Malakhov, G.I. Lykasov. Mid-rapidity dependence of hadron production in p-p and A-A collisions. Eur.Phys.J.A56 (2020) 4, 114.
$\Pi=\mathbf{N} \cdot \mathrm{ch} \mathrm{Y}$
$N=\left\{1+\left[1+\left(\Phi_{M} / \Phi^{2}\right)\right]^{1 / 2}\right\} \Phi$
$\Phi \approx\left\{\left(1 / m_{0}\right)\left[\mathrm{m}_{1 \mathrm{t}} \mathrm{chy} \cdot \mathrm{ch} Y+\right.\right.$
$+\mathrm{M}]\} \cdot\left[1 /\left(2 \mathrm{sh}^{2} \mathrm{Y}\right)\right]$
$\Phi_{\mathrm{M}}=\left(\mathrm{M}^{2}-\mathrm{m}_{1}{ }^{2}\right) /\left(4 \mathrm{~m}_{0}{ }^{2} \mathrm{sh}^{2} \mathrm{Y}\right)$

Conclusion

Inclusive spectra of the pions and kaons produced in pp, BeBe and kaons in ArSc collisions as functions of their transverse momentum p_{T}, have been calculated within the approach based on the assumption of the similarity of inclusive spectra of the hadrons produced in nucleus-nucleus collisions in the mid-rapidity region taking into account the quark-gluon dynamics in nucleonnucleon interactions.

As a result, we have obtained a good description:

- depending on p_{T} of secondary particles spectra in a wide range of energies;
- energy dependence of the inverse slope parameter;
- ratio of the strange kaon yield to the pion yield.
This approach has also $\{\bullet$ particle yield depending on their rapidity; allowed us to describe: • ratio of antiparticle to particle yields.

Thank you for the attention!

