

6

e

111

T'emepőy B (in C<mark>KU</mark> ŭ unc 省息息合

10

4

111

41.1

1.1

411

110

Ð

Ð

411

19

1.

1/1

111

11

1. Потоки и спектры солнечных нейтрино в ССМ *pp-, ⁷Be-, ⁸B-, pep-, hep- и С*О

2. Детекторы солнечных нейтрино Homestake, Kamiokande, SAGE, GALLEX/GNO, S-Kamiokande, SNO, KamLAND, BOREXINO

3. Детектор Борексино энергия, координаты события, фон

4. Результаты Борексино по солнечным нейтрино из *pp*-цепочки. ⁷Be-, ⁸B-, *pep- и pp-нейтрино*

5. СПО нейтрино *Корреляции с рер-нейтрино и ²¹⁰Ві, потоки, содержание С+N*

6. Измерение бета-спектра ²¹⁰Ві Два типа β-спектрометров на основе Si(Li)-детекторов в ПИЯФ

7. Результаты для CNO-v 2020 - 2023 г. перспективы и заключение

Регистрация СПО-нейтрино (Nature, 2020)

Article

Experimental evidence of neutrinos produced in the CNO fusion cycle in the Sun

https://doi.org/10.1038/s41586-020-2934-0 The Borexino Collaboration*

M. Agostini^{1,2}, K. Altenmüller², S. Appel², V. Atroshchenko³, Z. Bagdasarian^{4,27}, D. Basilico⁵ G. Bellini⁵, J. Benziger⁶, R. Biondi⁷, D. Bravo^{5,28}, B. Caccianiga⁵, F. Calaprice⁸, A. Caminata⁹, P. Cavalcante^{10,29}, A. Chepurnov¹¹, D. D'Angelo⁵, S. Davini⁹, A. Derbin¹², A. Di Giacinto⁷, V. Di Marcello⁷, X. F. Ding⁸, A. Di Ludovico⁸, L. Di Noto⁹, I. Drachnev¹², A. Formozov^{5,13} D. Franco¹⁴, C. Galbiati^{8,15}, C. Ghiano⁷, M. Giammarchi⁵, A. Goretti^{8,29}, A. S. Göttel^{4,16}, M. Gromov^{11,13}, D. Guffanti¹⁷, Aldo Janni⁷, Andrea Janni⁸, A. Jany¹⁸, D. Jeschke², V. Kobychev¹⁹, G. Korga^{20,21}, S. Kumaran^{4,16}, M. Laubenstein⁷, E. Litvinovich^{3,22}, P. Lombardi⁵, I. Lomskaya¹², L. Ludhova^{4,16}, G. Lukyanchenko³, L. Lukyanchenko³, I. Machulin^{3,22}, J. Martyn¹⁷, E. Meroni⁵, M. Meyer²³, L. Miramonti⁵, M. Misiaszek¹⁸, V. Muratova¹², B. Neumair², M. Nieslony¹⁷, R. Nugmanov^{3,22}, L. Oberauer², V. Orekhov¹⁷, F. Ortica²⁴, M. Pallavicini⁹, L. Papp², L. Pelicci⁵, Ö. Penek^{4,16}, L. Pietrofaccia⁸, N. Pilipenko¹², A. Pocar²⁵, G. Raikov³, M. T. Ranalli⁷, G. Ranucci⁵[™], A. Razeto⁷, A. Re⁵, M. Redchuk^{4,16}, A. Romani²⁴, N. Rossi⁷, S. Schönert², D. Semenov¹², G. Settanta⁴, M. Skorokhvatov^{3,22}, A. Singhal^{4,16}, O. Smirnov¹³, A. Sotnikov¹³, Y. Suvorov^{3,7,30}, R. Tartaglia⁷, G. Testera⁹, J. Thurn²³, E. Unzhakov¹², F. L. Villante^{7,26}, A. Vishneva¹³, R. B. Vogelaar¹⁰, F. von Feilitzsch², M. Wojcik¹⁸, M. Wurm¹⁷, S. Zavatarelli⁹ K. Zuber²³ & G. Zuzel¹⁸

95 авторов, 22 РФ, 7 ПИЯФ

Регистрация СПО-нейтрино (ЕРЈ С, 2020)

The European Physical Journal

ed by European Physical Society

volume 80 · number 11 · november · 2020

Particles and Fields

mal view of the Bonwino liquid scintilator containment liquid scintilator vessel. From the photo several parts of the detector are visible: the photomultipliers

Springer

From the Borexino collaboration on: Sensitivity to neutrinos from the solar CNO cycle in Borexino

(silver-like color) the mu-metal shielding (bress-like color) the bottom of the outer nylon vessel (upper part of the photo). Eur. Phys. J. C (2020) 80:1091 https://doi.org/10.1140/epic/s10052-020-08534-2 The European Physical Journal C

Regular Article - Experimental Physics

Sensitivity to neutrinos from the solar CNO cycle in Borexino

BOREXINO Collaboration^a

M. Agostini¹, K. Altenmüller¹, S. Appel¹, V. Atroshchenko², Z. Bagdasarian^{3,d}, D. Basilico⁴, G. Bellini⁴, J. Benziger⁵, R. Biondi⁶, D. Bravo^{4,e}, B. Caccianiga⁴, F. Calaprice⁷, A. Caminata⁸, P. Cavalcante^{9,f}, A. Chepurnov¹⁰, D. D'Angelo⁴, S. Davini⁸, A. Derbin¹¹, A. Di Giacinto⁶, V. Di Marcello⁶, X. F. Ding ^{7,b}, A. Di Ludovico⁷, L. Di Noto⁸, I. Drachnev¹¹, A. Formozov^{4,12}, D. Franco¹³, C. Galbiati^{7,14}, C. Ghiano⁶, M. Giammarchi⁴, A. Goretti^{17,f}, A. S. Göttel^{3,15}, M. Gromov^{10,12}, D. Guffanti¹⁶, Aldo Ianni⁶, Andrea Ianni⁷, A. Jany¹⁷, D. Jeschke¹, V. Kobychev¹⁸, G. Korga¹⁹, S. Kumaran^{3,15}, M. Laubenstein⁶, E. Litvinovich^{2,20}, P. Lombardi⁴, I. Lomskaya¹¹, L. Ludhova^{3,15}, G. Lukyanchenko², L. Lukyanchenko², I. Machulin^{2,20}, J. Martyn¹⁶, E. Meroni⁴, M. Meyer²¹, L. Miramonti⁴, M. Misiaszek¹⁷, V. Muratova¹¹, B. Neumair¹, M. Niesiony¹⁶, R. Nugmanov^{2,20}, L. Oberauer¹, V. Orekhov², F. Ortica²², M. Pallavicini⁸, L. Papp¹, Ö. Penek^{3,15}, L. Pietrofaccia⁷, N. Pilipenko¹¹, A. Pocar²³, G. Raikov², M. T. Ranalli⁶, G. Ranucci^{4,e}, A. Razeto⁶, A. Re⁴, M. Redchuk^{3,15}, A. Romani²², N. Rossi⁶, S. Schönert¹, D. Semenov¹¹, G. Settanta³, M. Skorokhvatov^{2,20}, O. Smirnov¹², A. Sotnikov¹², Y. Suvorov^{2,6,8}, R. Tartaglia⁶, G. Testera⁸, J. Thurn²¹, E. Unzhakov¹¹, F. L. Villante^{6,24}, A. Vishneva¹², R. B. Vogelaar⁹, F. von Feilitzsch¹, M. Wojcik¹⁷, M. Wurm¹⁶, S. Zavatarelli⁸, K. Zuber²¹, G. Zuzel¹⁷

95 авторов, 22 РФ, 7 ПИЯФ

Регистрация СОО-нейтрино (2016-20-22-23)

«Physics World's Top Ten Breakthroughs of 2020»

The EPS European Physical Society has awarded the prestigious "Giuseppe and Vanna Cocconi Prize 2021" to the scientific collaboration Borexino.

В 2021 году коллаборация была удостоена престижной премии Д.&В. Коккони Европейского физического общества за выдающийся вклад в астрофизику элементарных частиц и космологию, а именно, за новаторское наблюдение солнечных нейтрино из pp-цепочки и СNO-цикла.

Важный результат, который был включен в 10 прорывных результатов 2020 года во всех разделах физики. В 2021 коллаборация получила премию Д. и В. Коккони, в существенной степени за результат для СNO-нейтрино.

рр-цепочка и СКО-цикл

Ядерный синтез H в He в звездах происходит посредством двух процессов: *pp-цепи*, включающей изотопы H и He, и цикла углерод-азот-кислород (CNO), в котором синтез катализируется ядрами C, N и O. CNO цикл производит лишь 1% энергии Солнца, но для более массивных и горячих звезд этот цикл является определяющим, так уже для звезд с массой 1.3 Солнца, он отвечает за ½ всей вырабатываемой энергии. CNO-цикл был предсказан теоретически и до сих пор не имел прямого экспериментального подтверждения.

рр-: 4р→⁴He +2e⁺ + 2v_e + (26. 7 МэВ) и СNО-цикл

Солнце производит энергию путем превращения водорода в гелий. Полная выделяемая энергия 26.7 МэВ, из которой 0.6 МэВ уносят нейтрино. 99% энергии производится в рр-цепи, и менее 1 % дает СЮ-цикл

 $^{17}\mathrm{O}$

 $^{17}\mathrm{F}$

 ^{16}O

 (p, α)

CNO

Π

 (p, γ)

0.05%

Спектры солнечных нейтрино

В *pp*-цепочке испускается 5 нейтрино, в СNO-цикле основные потоки нейтрино связаны с β +распадами ядер ¹³N, ¹⁵O и ¹⁷F (EC присутствует). Наиболее интенсивный поток pp-нейтрино составляет 6х0¹⁰ v/см²сек, ⁷Be – 5х10⁹, ⁸B- 6х0⁶, CNO –(2-3)х10⁸, реактор ~ 10¹³ v/см²сек.

Регистрация СПО-нейтрино

СПО-цикл, имеющий первостепенное значение для всей астрофизики, был предсказан теоретически в 1938 г. к. Вайцзеккером, даже раньше чем рр-цепочка (Х. Бете), и до сих пор не имел прямого экспериментального подтверждения. Сложность измерения СПО-нейтрино заключается в том, что нейтрино имеют непрерывный спектр, их поток мал, а спектр электронов отдачи коррелирует с фоновым спектром 210Bi и спектром от рассеяния рер-нейтрино. Вклад 11С подавлен отбором.

Значение СПО-нейтрино

FLUX	B16-GS98	B16-AGSs09met	DIFF. (HZ-LZ)/HZ	0.8 0.7 pp 0.6 7Be Vacuum-I MA
pp (10 ¹⁰ cm ⁻² s ⁻¹)	5.98(1±0.006)	6.03(1±0.005)	-0.8%	
pep (10 ⁸ cm ⁻² s ⁻¹)	1.44(1±0.01)	1.46(1±0.009)	-1.4%	
⁷ Be (10 ⁹ cm ⁻² s ⁻¹)	4.94(1±0.06)	4.50(1±0.06)	8.9%	0.2 0.2 1 1 10
⁸ B (10 ⁶ cm ⁻² s ⁻¹)	5.46(1±0.12)	4.50(1±0.12)	17.6%	Neutrino energy (MeV) 0.8 MSW-LMA-NSI Prediction MSW-LMA-NSI Prediction MSW-LMA-NSI Prediction
¹³ N (10 ⁸ cm ⁻² s ⁻¹)	2.78(1±0.15)	2.04(1±0.14)	26.6%	0.7 Barger et al., 0.6 0.6 0.7 0.6 0.7 0.6 0.7 0.6 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7
o ^{_15} O (10 ⁸ cm ⁻² s ⁻¹)	2.05(1±0.17)	1.44(1±0.16)	29.7%	0.5
¹⁷ F(10 ⁶ cm ⁻² s ⁻¹)	5.29(1±0.20)	3.26(1±0.18)	38.3%	0.4 0.3 Friedland et al
N. Vinyoles et al., Astrophys. J. 836 (2017) 202				PLB 594, 347 (2004) Before Borexino 1 E [MeV]

СПО играет ключевую роль в астрофизике, являясь основным источником энергии в более массивных и горячих звездах. Изучение СПО цикла важно для физики Солнца, поскольку потоки СПО нейтрино наиболее сильно зависят от металличности. Две канонические модели. Потоки нейтрино из pp-цепочки зависят от Z/X косвенным образом через T. Paзличие LZ (1.8%) и HZ (2.3%) - 9%(7Be) и 18%(8B) и достигает 30-40 % для СПО-v. Энергия нейтрино лежит в переходной области между вакуумными осцилляциями и осцилляциями в веществе.

Грибов, Понтекорво - Михеев, Смирнов

Хронология детекторов солнечных нейтрино

Солнечные нейтрино регистрировались 3-мя радиохимическими и 5 RT детекторами

Пороги регистрации и спектры нейтрино

Ga-Ge и Cl-Ar детекторы с низким порогом регистрировали интегральный поток. Порог регистрации SK, SNO и KamLand более 5 (3.5) МэВ. До Борексино, SK и SNO KamLand регистрировали ~10⁻⁴ потока солнечных V.

Осцилляционные решения для солнечных нейтрино

BOREXINO –сцинтилляционный детектор солнечных нейтрино

- Основная цель проекта регистрация солнечных нейтрино с энергией менее 2 МэВ в реальном времени. Выбор осцилляционного решения – LMA, SMA или LOW
- Реакция рассеяние нейтрино на электроне
- Детектор жидкий сцинтиллятор
- Основная проблема естественная радиоактивность. Необходимый уровень очистки сцинтиллятора от U, Th – 10⁻¹⁷ г/г
- Основная идея максимально очистить легкие жидкости от естественной и искусственной р/а. Первый слой пассивной защиты от внешнего гамма- и нейтронного излучения – сцинтиллятор и вода. Максимальная степень очистки центрального сцинтиллятора.

Borexino:1990 - 1995 - 2007 - 2017 - 2022

1990 – предложен проект 1995- построен прототип CTF 2001 – первые результаты CTF 2004 – изменение инфраструктуры 2007 – начало измерений 2007-2010 – Фаза 1 (7Be, pep-,8B-v) 2010-11 – калибровка и очистка 2012 - 2017 Фаза 2 (pp, 7Be, pep, 8B, CNO<X) 2018 - 2022 CNO/SOX ФазаЗ (CNO)

Bruno PontecorvoEnrico FermiAward 2016Award 2017«Physics World's Top Ten Breakthroughs of 2014»«Physics World's Top Ten Breakthroughs of 2020»

ΦΑЗΑ | Καπυδ.Οчистка ΦΑЗΑ ΙΙ ΦΑЗΑ ΙΙΙ R&D CTF Утверждение Останов 1990 1995 1997 2002 2007 2010 2012 2017 2022 02.04.2024 г. Сессия СЯФ ОФН РАН, ОИЯИ, 1-5 апреля 2024 16

Основная задача Борексино:

Регистрация упругого рассеяния 7Венейтрино на электроне.

Поток монохроматических 7Ве-нейтрино (E=862 кэВ) составляет 10% от общего потока солнечных нейтрино

Спектр электронов отдачи

Проверка и уточнение параметров осцилляционного LMA MSW решения

Сечение рассеяния нейтрино на электроне

$$\frac{d\sigma}{dE_{e}} = \frac{2G_{F}^{2}m_{e}}{\pi} \left(g_{L}^{2} + g_{R}^{2} \left(1 - \frac{E_{e}}{E_{V}}\right)^{2} - g_{L}g_{R}\frac{m_{e}E_{e}}{2E_{V}^{2}}\right)$$

Сечение реакции ~ 10^{-45} см² $G_F^2 m_e/2\pi = 4.3 \cdot 10^{-45}$ см² МэВ⁻¹

Для электронных нейтрино – CC+NC: $g_L = 1/2 + \sin^2 \theta_W, \ g_R = \sin^2 \theta_W - \partial \pi v_e (W+Z)$

Для μ - и τ -нейтрино σ в ~5 раз меньше: g_L =-1/2+sin² θ_W , g_R =sin² θ_W - для $v_{\mu\tau}$ (Z)

Детектор регистрирует v_{e} , v_{μ} и v_{τ} :

$$\frac{d\sigma}{dE_e} = P_{ee} \cdot \left(\frac{d\sigma}{dE_e}\right)_{W+Z} + (1 - P_{ee}) \cdot \left(\frac{d\sigma}{dE_e}\right)_{Z}$$

Ожидаемый эффект ~ 50 событий на 100 тонн в сутки в интервале 0 – 700 кэВ

Световыход PC+PPO 1.1х 10⁴ фотонов/МэВ 1)Хорошее энергетическое разрешение; Perucmpupyem 500 ϕ .э./ МэВ —> 5% / $E^{0.5}$ 2) Низкий порог регистрации; Триггер 25 ϕ .э. = 50 кэВ 3)Хорошая пространственная реконструкция. 14 см при энергии 1 МэВ 4)Возможность α/β дискриминации

neutrino electron electron v neutrino

ОДНАКО...

-1)невозможно определить направление нейтрино;
-2)событие (v,e)-рассеяния является одиночным событием, не сопровождающимся другой частицей

Чтобы выделить данную реакцию необходимо понизить фон естественной радиоактивности в ~ 10¹⁰ раз

ВЫСОЧАЙШИЕ ТРЕБОВАНИЯ К РАДИАЦИОННОЙ ЧИСТОТЕ СЦИНТИЛЛЯТОРА И МАТЕРИАЛОВ ДЕТЕКТОРА

Национальная лаборатория Гран Сассо

Италия, 120 км от Рима 3800 м.в.э.

Наземные лаборатории

Подземная лаборатория Гран-Сассо

02.04.2024 г.

Borexino Collaboration

Muon PMTs

Internal PMTs

Stainless Steel Sphere

Stainless steel sph(R=6,85 м) - 2212 8" PMTs; - 1350 м³ PC+DMP (5,0 г/л)

Non-scintillating buffer

278 ton liquid scintillator

Nylon vessels

Scintillator

Two 125 µm nylon spheres: - R=4,25 m;- R=5,5 m (Rn-barrier)

Water Tank

2100 m³ water tank: R=9 m, H=16,9 m; - 208 PMTs of active shield in WT;

- Shielding from μ , γ and n

Muon PMTs

Сессия СЯФ ОФН РАН, ОИЯИ, 1-5 апреля 2024

NIM A600 (2009) 568

Стальная сфера с отверстиями для ФЭУ

2212 ФЭУ на поверхности стальной сферы

2212 ФЭУ на поверхности стальной сферы

Стальная и нейлоновые сферы

ФЭУ на дне стальной сферы и анти-Rn сфера

Заполнение – сперва вода, затем сцинтиллятор

Вид на СТГ, на и внутри сферы, центр управления

02.04.2024 г.

Рекордная чистота жидкого сцинтиллятора

Компонент	Типичная распространенность (источник)	CTF	Borexino Фаза 2		
¹⁴ С / ¹² С [г/г]	(10 ⁻¹² (космогенный)	2-10 ⁻¹⁸	2.7x10 ⁻¹⁸		
²³⁸ U [г/г] (по ²¹⁴ Ві)	2.10⁻⁵ (пыль)	< 4.8-10 ⁻¹⁶	1.6 x 10 ⁻¹⁷ 9.7 x 10 ⁻¹⁹		
²³² Th [г/г] (по ²¹² Bi)	2.10⁻⁵ (пыль)	< 8.4·10 ⁻¹⁶	6.8 x10 ⁻¹⁸ 1.2 x10 ⁻¹⁸		
²²² Rn (²³⁸ U [г/г] по ²¹⁴ Bi)	100 атомов/см ³ (воздух)	(3.5±1.3) ·10 ⁻¹⁶	~ 10 ⁻¹⁶		
⁴⁰ К [г/г]	2·10 ⁻⁶ (пыль)	≤10 ⁻¹⁵	< 10 ⁻¹⁴		
²¹⁰ Рb[µБк / т]	(поверхностное з.)	500	~1		
⁸⁵ Kr [µБк / т]	1 Бк/м ³ (воздух)	600	0.29/(т сут)		
³⁹ Ar [µБк / т]	17 mБк/м³(воздух)	<800	~1		
Нижний порог регистрации определяется активность 14С, которая на 6					

порядков меньше чем на поверхности. U и Th в 10¹² раз меньше, чем в о.с. Сигнал от 7Be-нейтрино 5х10⁻⁹ Бк/кг. Активность ²³⁸U, ²³²Th в воде 10 Бк/кг

Что может Борексино:

- 1. Определение энергии события
- 2. Восстановление координат (x, y, z) события
- Альфа-бета дискриминация (отличить сигнал, вызванный альфачастицей, от сигнала, вызванного электроном)

Определение энергии события

1. Энергия определяется как число сработавших ФЭУ (или как Σф.э. или ΣАЦП_i). Калибровка была выполнены по спектрам ¹⁴C, ²¹⁴Вi-²¹⁴Po, ¹¹C и ²⁴¹Am⁹Be. 2. Учитывается зависимость числа фотонов от dE/dX(ионизацион-

ный дефицит)

Регистрируется $11000 \times \epsilon_{\text{геом}} \times \epsilon_{\phi,\kappa} = 500 \phi.э. для события с энергией 1 МэВ. Энергетическое разрешение 5%/<math>\sqrt{E(MэB)}$. Триггер устанавливается при срабатывании **К ФЭУ** во временном окне 60 нс. Значение K = 25 соответствует порогу 50 keV, скорость счета 11 Hz определяется активностью ¹⁴C.

Восстановление координат (х, у, z) события

Необходимо, поскольку фон в полном объеме недостаточно подавлен из-за γквантов, выходящих из сферы и ФЭУ. Только условие R<3.2 м, которое вырезает внутренние 100 т, обеспечивает приемлемое соотношение эффект/фон. Программы реконструкции используют время прихода фотонов, которое регистрируется TDC. Точность восстановления ~ 1/sqrt(E) и зависит от скорости излучения фотонов

02.04.2024 г.

α/β - дискриминация

Световыход для α–частиц в ~10 раз меньше, чем для электронов той же энергии. α–частицы естественной р/а регистрируются как события с E< 1 МэВ. Для разделения используется зависимость скорости высвечивание фотонов от плотности ионизации.

Измерения с нейтронным AmBe источником позволили настроить p(n)/β дискриминацию

Результаты 10-летних измерений солнечных нейтрино

Фаза I+II «Nature» от 24 октября 2018 г.

- 1. Поток ⁷Ве-нейтрино измерен с 2.7 % точностью
- 2. Поток ⁸В-v измерен с порога 3.0 МэВ
- 3. Поток рер–нейтрино выходит за 50
- 4. Измерен поток рр-нейтрино с 10.5% точностью

5. Наиболее строгий предел на поток CNOнейтрино

6. В одном эксперименте определена доля электронных нейтрино (Рее) при различном вкладе вакуумных осцил. и осцил. в веществе

7. Не обнаружена асимметрия «день-ночь» для 7Веv. LMA-решение подтверждено для нейтрино.

8. Обнаружены годовые вариации потока 7Венейтрино.

9. Определено отношение R(³He+⁴He)/R(³He+³He) =2Ф(⁷Be)/(Ф(pp)-Ф(⁷Be)) = 0.178+^{0.027}-0.023</sub>, которое является критическим тестом солнечного синтеза - R=0.180±0.011(HZ), R=0.161±0.010(LZ)

10. Совместный фит всех нейтрино предпочитает НZ модель

СПО-нейтрино. Спектр Борексино

Спектр Борексино в интервале 320-2640 кэВ, накопленный за 1072 сут. живого времени, является суммой вкладов нейтрино и радиоактивных примесей в сцинтилляторе (⁸⁵Kr, ²¹⁰Bi, ²¹⁰Po и ⁴⁰K) и космогенного ¹¹C, а также γ-квантов от распадов ⁴⁰K, ²¹⁴Bi и ²⁰⁸TI во внешних материалах. Спектр CNO-v подобен β-спектру 210Bi. Для выделения вклада CNO-нейтрино необходимо измерить или ограничить спектры ²¹⁰Bi и рер-нейтрино и подавить 11C.

Отбор ¹¹С - три последовательных совпадения

Основной фон при регистрации рер-v связан с изотопом ¹¹С (t1/2=20 мин), который образуется под действием мюонов. Подавление фона ¹¹С в ~10 раз при приемлемой потере живого времени.

Активность ²¹⁰Ві по активности ²¹⁰Ро

β-активность ²¹⁰Ві может быть определено по α-активности ²¹⁰Ро если имеется равновесие. Для устранения конвективных потоков выполнена термостабилизация детектора, что позволило выделить область R(²¹⁰Po)=11.5±1.0 отс./ сут.100 m и ограничить R(²¹⁰Bi).

Термостабилизация сцинтиллятора

Работы по стабилизация температуры внутри водного танка с 2016 г. Пассивная (20 см мин. ваты) и активная системы (нагреватели) позволили стабилизировать T на уровне 0.1 C и подавить конвективные потоки.

Температурная стабильность достигнута за 2 года

Начиная с сентября 2017 температура стабилизировалась, в результате удалось выделить области стабильной скорости счета.

02.04.2024 г.

Первый результат для СОО-нейтрино

Результаты счетного и спектрального анализа в сравнении с LZ и HZ SSM. Функция правдоподобия скорости счета CNO-нейтрино для 320-2640 кэВ. Показаны интервалы для SSM-LZ $R=(3,52\pm0,52)$ соб./сут.100m и SSM-HZ $R=(4,92\pm0,78)$. Результат Вогехіпо $R(CNO)=(7.2_{-1.7}^{+3.0})$ соб./сут.100m. $\Phi(CNO)=(7.0_{-2.0}^{+3.0})\times10^8$ v/см²с. Значимость наблюдения CNO составляет 5.1 го. Гистограмма показывает $R(CNO)=(5.6\pm1.6 \text{ с/сут.100m}, 3.5\sigma)$, анализ в ROI=780-885 кэВ. Счетный и спектральный анализ используют форму β -спектра ²¹⁰Bi.

Si(Li)-детекторы с толщиной до 10 мм

Измерение энергии электронов и α-частиц производилось с помощью Si(Li)-детекторов, изготовленных нами в ПИЯФ, и имеющих хорошее энергетическое разрешение (σ~1 кэВ при E=1 MэB), тонкое входное окно (~5000 A) и достаточную толщину для регистрации электронов с энергией до 3 МэВ. Детекторы размещаются в вакуумном криостате и охлаждаются до температуры жидкого азота.

02.04.2024 г.

Бета-спектрометр «мишень-детектор»

В ПИЯФ был специально разработан и создан бета-спектрометр, состоящий из Si(Li)детектора полного поглощения и пролетного Si-детектора, который позволяет эффективно разделять β -излучение ядер от сопутствующего рентгеновского и γ излучения. Метод основан на использовании совпадений между толстым и тонким детекторами. Спектрометр может использоваться для прецизионного измерения формы β -спектров различных радиоактивных ядер, в частности для измерения β спектров ¹⁴⁴Ce -¹⁴⁴Pr и ²¹⁰Bi для задач нейтринной физики.

4πβ спектрометр с Si(Li)-детекторами

Для решения проблемы «хвоста» функции отклика создан 4πβ-спектрометр. В центре Si(Li)детектора вышлифована лунка, в которую наносится источник. Сверху накладывается второй Si(Li)-детектор. Вся конструкция размещается в криостате и охлаждается до температуры жидкого азота. 4π спектрометр с функцией отклика близкой к Гауссовой практически решает проблему β-спектра для E_e>70 keV. Для определения спектра ниже 70 keV необходимо вычислить поправки и определить значения C1 и C2.

Спектр 210Ві и СПО-нейтрино

Форма спектра ²¹⁰Ві существенно отличается от ожидаемой и важна при анализе вклада СNO-нейтрино в измеренный спектр Борексино. Особенно это важно при анализе спектров будущих детекторов с большей статистикой для CNO-нейтрино и меньшим вкладом в фон космогенного ¹¹С. Анализ на полном наборе данных Борексино, который дополнительно включает 1.5 года статистики, выполнен в 2022 г.

Регистрация СПО-нейтрино – результат 2022 г.

Результаты спектрального анализа данных с января 2017 г. по октябрь 2021 г подавленным вкладом космогенного фона 11С (слева). Справа: функция правдоподобия (-2ΔInL) скорости счета CNO-нейтрино с учетом статистики и систематики. Синие, фиолетовые и серые вертикальные полосы показывают 68% у.д. для SSM-LZ (3,52±0,52 cpd/ 100 m) и SSM-HZ (4,92±0,78 cpd/100 m) и результат Borexino (6.8-0.8+2.0 cpd/ 100 m), соответственно. Новый метод для включения в анализ всех данных, фаз I+II+III.

Выделение интегрального направления ⁷Ве-*у*

Разработан новый метод, который сопоставляет позицию ФЭУ для зарегистрированного фотона с положением Солнца и определяет угол фотона от направления на Солнце. В анализе используются различия во временной вероятности излучения черенковских и сцинтилляционных фотонов. В энергетическом окне от 0,54 до 0,74 МэВ получено для 7Be-v 51,6±13 соб/сут 100 m, что согласуется с предыдущими спектроскопическими результатами Borexino. Впервые продемонстрирована возможность использования направленного черенковского излучения для МэВ-ных солнечных нейтрино в сцинт. детекторе с высоким световыходом. Возможность реконструкции событий с использованием как черенковских, так и сцинт. фотонов.

Выделение интегрального направления CNO-v на Солнце PRD 108, 102005 (2023)

Два интервала для 7Be-v и CNO-v, использовавшиеся при анализе данных фазы I+II+III в объеме радиусом 2,95 м. Компоненты солнечных нейтрино показаны для SSM HZ. Значения смещения результата восстановления координат и групповой скорости для CNO-v находились из результата для 7Be-v. (а) Гистограмма N(cosa) для 1-4 фотонов показывает явный пик черенковского излучения. (в) Гистограмм N(cosa) для фотонов, начиная с 5-го.

Регистрация СОО-нейтрино – результат 2023 г.

PRD 108, 102005 (2023)

Метод выделения интегрального направления (МВИН) использовался для включения в анализ всего набора данных Борексино – Фазы I+II+III. Без ограничения активности ²¹⁰Bi для скорости счета CNO *v* получено (7.2^{+2.8}_{-2.7}) соб./сут. 100 т. Наиболее точное измерение потока CNO-*v* получается путем объединения результата для CNO-*v* на основе МВИН с результатами спектрального анализа данных Фазы-III. С учетом стат. и сист. ошибок полученная скорость взаимодействия CNO-*v* составляет (6.7^{+1.2}-0.8) соб./сут. 100 т, что соответствует потоку (6.7^{+1.2}-0.8)×10⁸ см⁻² с⁻¹, с учетом осцилляций нейтрино. Величина согласуется со ССМ с высокой металличностью B16-GS98. В сочетании с результатами измерений потоков 7Ве- и 8В-*v*, ранее полученными Борексино, модель B16-AGSS09met с низкой металличностью отвергается на уровне 3.2*o*.

Металличность: теория vs эксперимент

SSM-HZ= B16-GS98: Vinyoles et al. Astr.J. 835 (2017) 202 + Grevesseet al., SpaceSci.Rev. (1998)85 **SSM-LZ**= B16-AGSS09met: Vinyoles et al. Astr.J. 835 (2017) 202 + A. Serenellier al., Astr. J. 743,(2011)24

Включение результатов СПО в глобальный анализ данных о солнечных нейтрино + KamLAND (1о контур); $\Phi(Be)$, $\Phi(B)$ и $\Phi(CNO)$ вместе с θ_{12} и Δm_{12}^2 являются свободными параметрами фита. Результаты хорошо согласуются с HZ, но не с LZ. Добавление CNO уменьшает P(LZ) до 0,028 (0.016 Вх только). Добавление результатов по 7Ве и 8В нейтрино позволяет исключить LZ на уровне 3.10.

Заключение

1. Коллаборация Borexino успешно провела нейтринную спектроскопию Солнца по реакции (v,e)-рассеяния. С рекордной точностью измерены потоки pp-, 7Be-, pep- и СNO-нейтрино, а поток 8B-нейтрино измерен с наиболее низкого порога.

2. Определенная скорость счета СNO-нейтрино составляет 6.7^{+1.2}_{-0.8} соб./сутки/100 т, что соответствует потоку CNOнейтрино (6.7^{+1.2}_{-0.8})×10⁸ см⁻² с⁻¹. Гипотеза отсутствия CNOнейтрино отвергается на уровне ≈ 8 σ .

3. Повышение точности в измерении потоков и спектров низкоэнергетических pp-, ⁷Be-, pep- и СNO-нейтрино важно, как для физики частиц, так и физики Солнца. Данные Borexino лучше согласуются с HZ моделью Солнца.

Species	Rate $[cpd/100t]$	Flux $[cm^{-2} s^{-1}]$
pp	$(134 \pm 10)^{+6}_{-10}$	$(6.1 \pm 0.5)^{+0.3}_{-0.5} \times 10^{10}$
⁷ Be	$(48.3 \pm 1.1)^{+0.4}_{-0.7}$	$(4.99 \pm 0.11)^{+0.06}_{-0.08} \times 10^9$
pep (HZ)	$(2.7 \pm 0.4)^{+0.1}_{-0.2}$	$(1.3 \pm 0.3)^{+0.1}_{0.1} \times 10^8$
$^{8}B(>3 MeV)$	$0.223^{+0.021}_{-0.022}$	$5.68^{+0.42}_{-0.44} \times 10^{6}$
CNO	$6.7^{+1.2}_{-0.8}$	$6.7^{+1.2}_{-0.8} \times 10^8$
hep	$< 0.002~(90\%~{\rm CL})$	$< 1.8 \times 10^5 (90\% \text{ CL})$

Спасибо за внимание!

Перспективы для СNO нейтрино

Ожидаемая точность измерения потока СNO-нейтрино для двух сценариев, согласно 2107.0861. Точность экспериментов превысит точность теоретических предсказаний.

Перспективы солнечных нейтрино

Hyper-Kamiokande, **JUNO**, ЛАБ,680 м **JinPing**, 5кт,LS,2.4км **THEIA**, 50-100 кт, **Баксан**, 10 кт, 250 km, ⁸B, hep-v реакторные,⁷Be,⁸B pp, ⁷Be, ⁸B,CNO WbLS, ⁷Be, ⁸B LS-¹⁴C,geo,sol

DARWIN, LXe, 40t, pp- , ⁷Be-v, axions, 2b0v ¹³⁶Xe, CvNS (⁸B-v), SN-v

DarkSide20k, LAr, 50 m, ⁴²Ar -⁴²K (3.5 M₃B), DUNE

XENONnT, LXe, 59 m,

