Анализ распределений Далитца для событий процесса $e^+e^- \rightarrow \pi^+ \pi^- \pi^0$

Димова Т.В.

Институт Ядерной Физики им. Г.И.Будкера Новосибирский Государственный Университет

2 апреля 2024

Мотивация

- Предыдущий результат с детектора СНД, который продемонстрировал, что в области состояния ω(1420) процесс e⁺e⁻ → π⁺π⁻ π⁰ идет в основном через промежуточное состояние ρπ, в то время как в области состояния ω(1650) этот процесс идет через промежуточное состояние ρ'π.
- 2. На детекторе КLOE был измерен вклад от «прямого» распада φ мезона ($I_{dir} = 8.5 \cdot 10^{-3}$; $I_{\rho\pi} = 0.937$; $I_{\omega\pi} = 2.0 \cdot 10^{-4}$), который можно интерпретировать как вклад от промежуточного состояния $\rho'\pi$.
- Измерение BESSIII в диапазоне 2.00 3.08 ГэВ продемонстрировало присутствие промежуточных состояний ρπ, ρ'π и др. в сечении e⁺e⁻ → π⁺π⁻π⁰
- 4. Улучшили процедуру анализа и появилась возможность использовать большую статистику.

Фит распределения по инвариантной массе $\pi^+\pi^-$ при энергии $\sqrt{s} = 2.3960$ GeV

Детектор СНД

1 — вак.камера, 2 — трековый детектор, 3 — аэрогель, 4 — кристаллы NaI(Tl), 5 фототриоды, 6 — мюонный фильтр, 7—9 — мюонный детектор, 10 — СП соленоиды.

Calorimeter		
Thickness	13.5 X ₀	
Acceptance	$0.95 imes 4\pi$	
Energy resolution	$\frac{\sigma_B}{E} = \frac{0.042}{\sqrt[4]{E[GeV]}}$	
Angular resolution $\sigma_{\phi,\theta} = \frac{0.82^{\circ}}{\sqrt[4]{E[GeV]}} \oplus 0.63^{\circ}$		
Tracking system		
Acceptance (9 layers)	$0.94 imes 4\pi$	
Angular resolution	$\sigma_{oldsymbol{\phi}}=0.55^\circ$, $\sigma_{oldsymbol{ heta}}=1.2^\circ$	
Vertex resolution	$\sigma_{R}=0.12cm,\ \sigma_{Z}=0.45cm$	
Aerogel counters		
K/ π separation	E < 1 GeV	

Использованные данные

Эксперимент	Число точек	Светимость (пб ⁻¹)
MHAD 2019	42 точки от 1.075 до 1.975 ГэВ (объединены в 14т для анализа распределений Далитца)	68.1

Условия отбора $e^+e^- \rightarrow \pi^+\pi^-\pi^0$

Предварительный отбор:

- 2 заряженные центральные частицы (R<0.5 см, |z|<10 см, |z(1)-z(2)| < 1.5)
- 2 фотона с энергией >50 MeV
- $0.3 < E_{tot}/(2E_{beam}) < 0.8$

Отбор после кинематической реконструкции в гипотезе $\pi^+\pi^- \gamma\gamma$:

- z вершины после реконструкции < 10 см</p>
- > 30°< θ заряженных частиц < 150°</p>
- \geq 30°< θ_{γ} < 150°
- ≻ ∆ф заряженных частиц> 10°
- \succ ΣE_{dep} заряженных частиц < 0.6·√s
- ⋟ Энерговыделение E_{dep} вне частиц <70 МэВ</p>
- > $\chi^2_R < 200$ (реконструкция общей вершины)
- > $\chi^2_E < 30$ (соблюдение законов сохранения э&и)
- ➢ Время срабатывание калориметра относительно момента столкновения пучков |∆t|<5нс</p>

Более строгие условия отбора для построения распределений Далитца:

 $\chi^2_E < 20$ ★ 110 MeV < M_{γγ} < 170 MeV,

Процедура вычитания фона

Основные фоновые процессы: $e^+e^- \rightarrow \pi^+\pi^-\pi^0\pi^0$ $e^+e^- \rightarrow \pi^+\pi^-\gamma$ $e^+e^- \rightarrow K_S K_L (\sqrt{s} < 1.14 \ \Gamma \Rightarrow B)$ $e^+e^- \rightarrow K^+K^-\pi^0 (\sqrt{s} > 1.7 \ \Gamma \Rightarrow B)$ $e^+e^- \rightarrow \mu^+\mu^-\gamma$

Кроме того, учитывались и другие многоадронные процессы с помощью инклюзивного генератора. Фит выполняется суммой распределений $m_{\gamma\gamma}$ для сигнала и фона. Параметрами подгонки были число событий $N_{3\pi}$ и множитель к форме распределения для фоновых процессов.

Модель процесса $e^+e^- \rightarrow \pi^+\pi^-\pi^0$

$$\begin{aligned} \frac{d\sigma}{d\Gamma} &= \left| \alpha A_{\rho\pi} + \beta A_{\rho'\pi} + \gamma A_{\omega\pi} \right|^{2} \\ A_{\rho^{(\prime)}\pi} &\sim \sum_{k=+,-,0} \frac{m_{\rho_{k}}^{2}}{q_{k}^{2} - m_{\rho_{k}}^{2}()} + iq_{k}\Gamma_{\rho_{k}}^{(\prime)}(q_{k}^{2})} \qquad \Gamma_{\rho_{k}}^{(\prime)}(q_{k}^{2}) = \Gamma_{\rho_{k}} \frac{m_{\rho_{k}}^{2}}{q_{k}^{2}} \left[\frac{p_{\pi}(q_{k}^{2})}{p_{\pi}(m_{\rho_{k}}^{2})} \right]^{3} \qquad A_{\omega\pi} \sim \frac{m_{\omega}^{2}}{q_{0}^{2} - m_{\omega}^{2} + im_{\omega}\Gamma_{\omega}} \\ D(M_{\pi}^{2} + \pi^{-}, M_{\pi}^{2} \pm \pi^{0}) &= |\alpha|^{2} H_{\rho\pi} + |\beta|^{2} H_{\rho'\pi} + |\gamma|^{2} H_{\omega\pi} + 2|\alpha||\beta| \cos(\varphi_{1}) R_{\rho\pi-\rho'\pi} + 2|\alpha||\beta| \sin(\varphi_{1}) I_{\rho\pi-\rho'\pi} + \\ &+ 2|\alpha||\gamma| \cos(\varphi_{2}) R_{\rho\pi-\omega\pi} + 2|\alpha||\gamma| \sin(\varphi_{2}) I_{\rho\pi-\omega\pi} + \\ &+ 2|\beta||\gamma| \cos(\varphi_{2} - \varphi_{1}) R_{\rho'\pi-\omega\pi} + 2|\beta||\gamma| \sin(\varphi_{2} - \varphi_{1}) I_{\rho'\pi-\omega\pi} \end{aligned}$$

 $H(q_k, s)$ – определяются из моделирования с использованием соответствующей A $R(q_k, s), I(q_k, s)$ – определяются из соотношений: $2R_{\rho\pi-\rho'\pi}(q_k, s) = H_{\rho\pi+\rho'\pi} - H_{\rho\pi} - H_{\rho'\pi}$ $2I_{\rho\pi-\rho'\pi}(q_k, s) = H_{\rho\pi+i\rho'\pi} - H_{\rho\pi} - H_{\rho'\pi}$

В связи с интерференцией параметров $|\gamma|$ и φ_2 , величина параметра $|\gamma|$ определялась из сечения $e^+e^- \rightarrow \omega \pi^0$: $N_{\omega\pi} = \epsilon_{\omega\pi} \sigma_{\pi\pi\gamma} (1+\delta) L / B(\omega \rightarrow \pi^0 \gamma) \cdot B(\omega \rightarrow \pi^+ \pi^-) \iff N_{\omega\pi} = |\gamma|^2 \epsilon_{\omega\pi} \int |A_{\omega\pi}|^2 d\Gamma$

Параметры подгонки: доля событий от р π и р' π , и фазы интерференции φ_1, φ_2

Особенности построения распределений Далитца

Построение спектров для аппроксимации

Использовались двумерные распределения по инвариантным массам $M_{\pi^+\pi^-}^2 vs M_{\pi^\pm\pi^0}^2 c$ разбиением 25х25 каналов. Ширина канала была выбрана таким образом, чтобы пик от ω мезона имел ширину 1.5-2 канала.

Учет вклада от фоновых событий

Для всех фоновых процессов строились распределения Далитца, нормированные на сечение и светимость.

Учет событий с излучением фотона из начального состояния

При первой итерации вклад от данных событий не учитывался. При следующих итерациях определялись параметры модели для моделирования, после чего отбирались события с энергией радиационного фотона более 20 MeV, соответствующие условиям отбора. Для них строились распределения Далитца и вычитались при подгонке. Всего было сделано 4 итерации.

Далитц распределения для отдельных компонент (MC)

10

Результат аппроксимации Далитц

Результат аппроксимации Далитц распределений: проекции

Результат аппроксимации распределений Далитца: фазы интерференции

 φ_1 - интерференция между $\rho\pi$ и $\rho'\pi$ состояниями

 φ_2 - интерференция между р π и $\omega\pi$ состояниями

Полное борновское сечение $e^+e^- \to \pi^+\pi^-\pi^0$ и рад.поправка

- Число событий N₃ определяется из подгонки М_{уу} спектров
- Аппроксимация сечения выполняется для определения рад. поправки
- Модель для подгонки включает в себя только промежуточное состояние рπ с суммированием по V = ω, φ, ω(1420), ω(1650) и константный член.
- Различие с предыдущим измерением СНД обусловлено не полным учетом фоновых процессов в предыдущем анализе

Борновское сечение процессов $e^+e^- \rightarrow \rho \pi$ и $\rho' \pi$

- Сечения получаются умножением доли событий соответствующего состояния полученных из аппроксимации распределений Далитца на значение полного борновского сечения
- Параметризация сечений производится моделью векторной доминантности с учетом V = ω, φ, ω(1420), ω(1650).
- Параметры распада φ мезона в ρ'π берутся из работы
 KLOE (фаза и величина сечения)

Параметры резонансов

Параметры	Фит 1 (без ω в ρ'π)	Фит2 (с ω в ρ'π)
М(ω') (Мэв)	1245 ± 30	1242 ± 34
Γ (ω΄) (ΜэΒ)	471 ± 20	503 ± 21
$\sigma (\omega' \rightarrow \rho \pi) ({\rm H} \delta)$	5.73 ± 0. 23	5.51 ± 0.23
$\sigma (\omega' \rightarrow \rho' \pi) ({\rm H} \delta)$	0.032 ± 0.011	0.056 ± 0.012
M(ω'') (MэB)	1638 ± 6	1644 ± 7
Γ(ω'') (M ₃ B)	138 ± 11	155 ± 13
σ (ω΄΄→ρπ) (нб)	0.062 ± 0.035	0.067 ± 0.035
σ (ω΄΄→ρ΄π) (нб)	1.47 ± 0.13	1.47 ± 0.13
$φ_{ωω'}$ (°) [ρπ]	$160^\circ \pm 3$	$156^{\circ} \pm 3$
$φ_{ωω''}$ (°) [ρπ]	$-72^{\circ} \pm 15$	$-67^{\circ} \pm 13$
$φ_{ω'ω'}$ (°) [ρ'π]	139° ± 6	$151^{\circ} \pm 5$
$φ_{ω''φ}$ (°) [ρ'π]	$8^{\circ} \pm 7$	$5^{\circ} \pm 8$

C $\varphi_{\omega''\omega} = 0, \sigma (\omega \rightarrow \rho' \pi) = 100$

 $\chi^2 = 51.5/38.6/53.3$

 $\chi^2 = 49.1/38.9/66.5$

Заключение & планы

- На основе данных с IL~70пб⁻¹ измерено сечение е⁺e⁻ → π⁺π⁻π⁰. Результат согласуется с измерением Babar, однако несколько меньше предыдущего результата СНД. Разница объясняется не полным учетом вклада от фоновых процессов в предыдущем анализе
- Получены сечения для промежуточных механизмов e⁺e⁻ → ρπ и e⁺e⁻ → ρ'π, различие с предыдущим измерением СНД связано, кроме разницы в фоновых процессах, еще и с не недооценкой вклада от событий с излучением из начального состояния.
- Из аппроксимации полученных сечений видно, что распад ω(1420) идет практически только через механизм ρπ, а его масса получается ниже, чем при аппроксимации полного сечения e⁺e⁻ → π⁺π⁻π⁰. Распад ω(1650) идет в основном через механизм ρ'π
- Кроме того, измерены фазы между амплитудами А_{ρπ} и А_{ρπ} и А_{ρπ} (φ₁) и А_{ρπ} и А_{ωπ} (φ₂). Результат согласуется с предыдущим измерением.
- В планах: повторить анализ, используя статистику (около 580пб⁻¹) набранную в 2020-2023 годах, что позволит значительно повысить точность определения сечений e⁺e⁻ → ρπ и ρ'π

Параметризация сечения $e^+e^- \rightarrow \pi^+\pi^-\pi^0$ (для р π и р' π механизмов)

Борновское сечение: $\sigma(s) = \frac{4\pi\alpha}{s^{\frac{3}{2}}} |A_{\rho(')\pi}|^2 P_{\rho(')\pi}(s)$ где $P_{\rho(')\pi}(s)$ – фазовый объем $\rho(')\pi$

$$A_{\rho\pi}(s) = \frac{1}{\sqrt{4\pi\alpha}} \sum_{V=\omega,\varphi,\omega',\omega''} \frac{\Gamma_V m_V^2 \sqrt{m_V \sigma_V}}{D_V(s) \sqrt{P_{\rho\pi}(m_V^2)}} e^{i\varphi_V} \quad A_{\rho'\pi}(s) = \frac{1}{\sqrt{4\pi\alpha}} \sum_{V=\omega,\varphi,\omega',\omega''} \frac{\Gamma_V m_V^2 \sqrt{m_V \sigma_V'}}{D_V(s) \sqrt{P_{\rho'\pi}(m_V^2)}} e^{i\varphi_V'}$$

Обратный пропагатор: $D_V(s) = m_V^2 - s - i\sqrt{s}\Gamma_V(s)$, где $\Gamma_V(s) = \sum_f \Gamma(V \to f, s)$

Для $V = \omega$, ϕ зависимость ширины Γ_V от энергии описывается, как сумма всех основных каналов распада. Для $V = \omega(1420), \omega(1650)$ ширина Γ_V является константой.

Фазы ϕ_V для $\rho\pi$ определяются относительно ω , для $\rho'\pi$ – относительно $\omega(1650)$. Масса и ширина ω, φ берутся из *PDG*, фаза $\varphi_{\varphi} = 163^{\circ}$. σ'_{φ} определяется по данным KLOE, при учете ω для перехода $\rho'\pi$ фаза $\varphi'_{\rho} = 0^{\circ}$, а σ'_{ρ} подбиралась в ручную.

В итоге параметрами подгонки являются масса и ширина $\omega(1420)$, $\omega(1650)$, сечения $\sigma_{\omega'}, \sigma_{\omega''}$ и фазы $\varphi_{\omega'}, \varphi_{\omega''}$ для механизма $\rho\pi$, сечения $\sigma'_{\omega'}, \sigma'_{\omega''}$ и фазы $\varphi'_{\omega'}, \varphi'_{\varphi}$ для механизма $\rho'\pi$.