

Изучение распада Z-бозона на лептонную пару и фотон по данным с детектора ATLAS на Большом адронном коллайдере

Алексей Харламов

Институт ядерной физики СО РАН

https://www.inp.nsk.su/images/preprint/Kharlamov.pdf

Eur. Phys. J. C 84, 195 (2024)

<u>arXiv:2310.11574</u> [hep-ex]

Письма в ЭЧАЯ 2024, Вклад прямой вершины взаимодействия в процессе $Z o l^+l^-\gamma$

Анализ проделан силами Новосибирской группы.

Analysis Team

[email: atlas-stdm-2017-05-editors]

Alexey Kharlamov editor1, Tatyana Kharlamova editor2, Yury Tikhonov, Kupich Andrey, Zhabin Viktor, Alexey Maslennikov, Evgenii Baldin

Editorial Board

[email: atlas-stdm-2017-05-editorial-board]

Daniel Froidevaux (chair) Elzbieta Richter-Was Christian Gütschow

Статья <u>arXiv:2310.11574</u> [hep-ex] *Eur. Phys. J. С* **84**, 195 (2024)

Рисунки и приложения

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/STDM-2017-05

План доклада

- 1. Введение
- 2. Отбор событий
- 3. Вычитание фона
- 4. Систематические неопределенности
- 5. Анфолдинг для: m_{lv} , ΔR , p_{T}^{V}
- 6. Вклад прямой вершины взаимодействия в процесс Z → 2Iγ
- 7. Процесс $Z \rightarrow 2I2\gamma$
- 8. Заключение

https://www.inp.nsk.su/images/preprint/Kharlamov.pdf

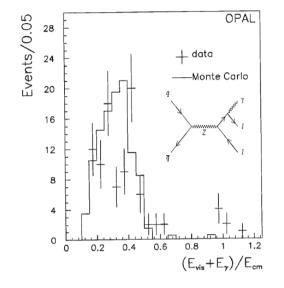
Eur. Phys. J. C 84, 195 (2024) arXiv:2310.11574 [hep-ex]

Письма в ЭЧАЯ 2024, 4 Вклад прямой вершины взаимодействия в процессе $Z \to l^+l^-\gamma_8$

Введение

Что можно измерять в процессе Z→2Lγ?

LEP-I Полное сечение, распределение по E_{γ} . Проверяли КЭД в древесном приближении. Извлекали ограничение на прямую вершину.


LHC CMS $Z \rightarrow \mu^+ \mu^- \gamma$: p_T^{γ} , ΔR .

 E_{ν} >150 M \ni B

OPAL

Data on peak					
$Z \rightarrow \ell^+\ell^-\gamma$	$e^+e^-(\gamma)$	$\mu^+\mu^-(\gamma)$	$\tau^+\tau^-(\underline{\gamma})$		
$N_{\ell+\ell-}^{coll}$	3698	3124	2661		
N_{γ} (Data)	123	108	103		
N_{γ} (MC)	117 ± 6	99 ± 5	90 ± 3		
$N_{\gamma}/N_{\ell^{+}\ell^{-}}^{coll}$ (Data) (×10 ⁻²)	3.3 ± 0.3	3.5 ± 0.3	3.9 ± 0.4		
$N_{\gamma}/N_{\ell+\ell-}^{coll}$ (MC) (×10 ⁻²)	3.2 ± 0.2	3.2 ± 0.2	3.4 ± 0.1		

Phys. Lett. B 273 (1991) 338-354

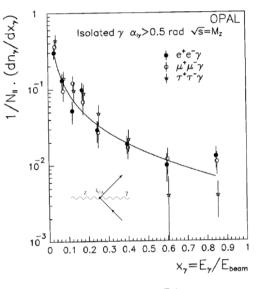
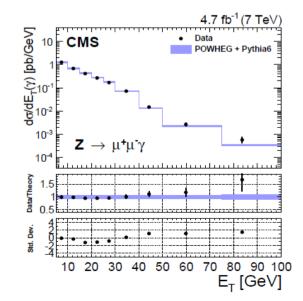
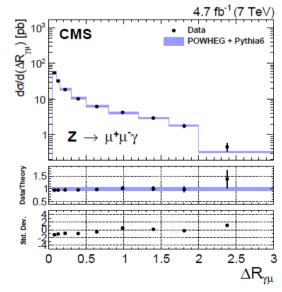
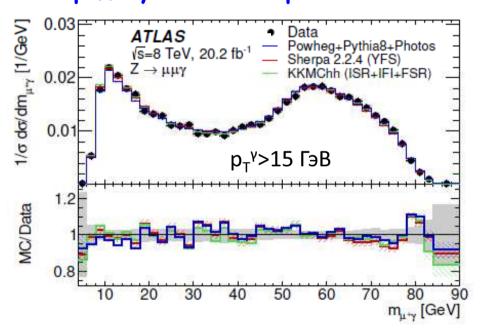
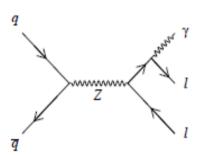




Figure 3d


$$Br(Z \to l^+ l^- \gamma) < 5.6 \cdot 10^{-4}$$
$$\Delta R = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2}$$


Phys. Rev. D 91 (2015) 092012

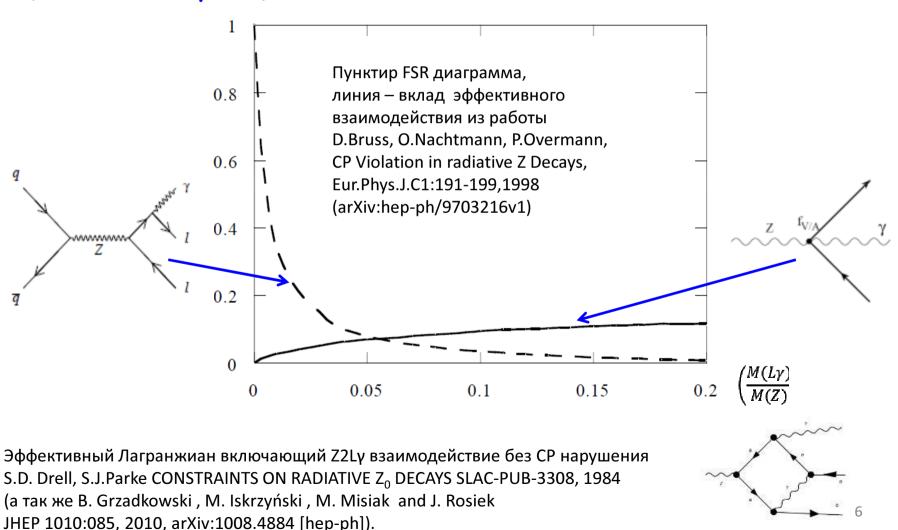
Точность CMS для $Z \rightarrow \mu^+ \mu^- \gamma \sim 5\%$

Идея анализа $Z \rightarrow 2L\gamma$ на ATLAS

Инвариантная масса лептона и фотона $M(L\gamma)$ распределена от 0 до M(Z). В процессе участвует виртуальный лептон с инв. массой до 91 ГэВ. Из дифференциального сечения по инвариантной массе лептона и фотона можно извлечь зависимость форм-факторов a_L , v_L вершины ZLL от виртуальности лептона (от 0 до 90 ГэВ), можно извлекать бегущий $Sin\theta_W$. Можно проверять КЭД и электрослабую теорию в высоких порядках (нужна высокая точность). Измеряются распределения по $M(L^{\pm}\gamma)$, откуда можно построить зарядовую асимметрию.

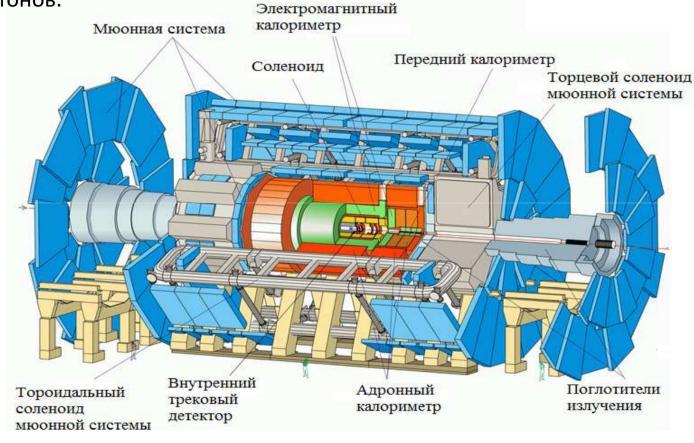
 $Z\rightarrow 11$ vertex function V(Q) is expressed by formula:

$$\langle f\bar{f}|J_Z^{\mu}|0\rangle = V_f(q^2)\bar{u}_f\gamma_{\mu} \left[\frac{I_{3f}(1-\gamma_5)}{2} - \hat{k}_f(q^2)\hat{s}^2Q_f\right]v_f,$$


[A. Sirlin, A.Ferroglia. Rev.Mod.Phys., V85 (2013): eq. (59) p.273]

The most general vector boson - fermion - antifermion coupling

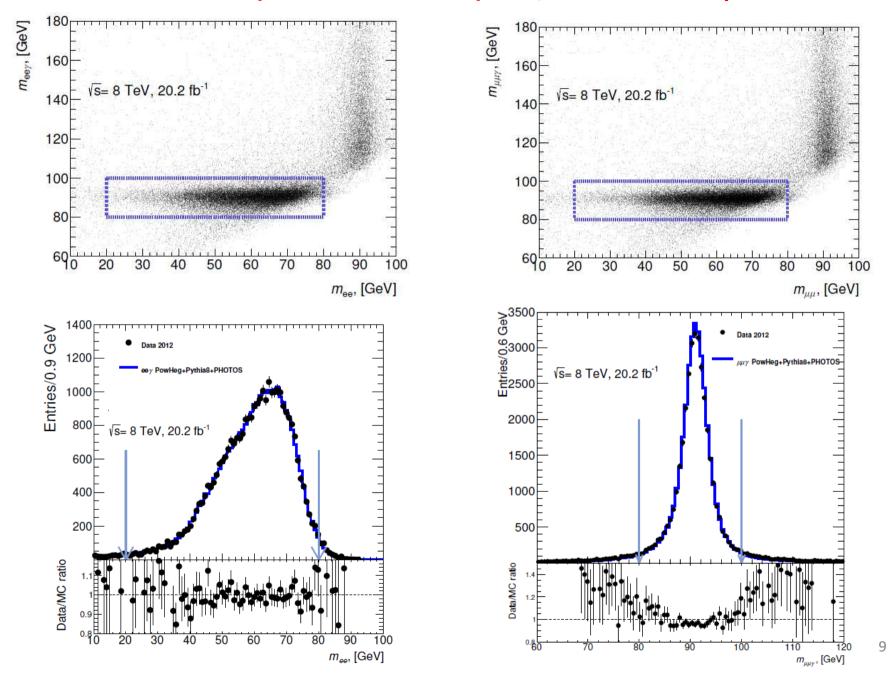
$$V_{\mu}\left(Q^{2}\right)=\left(2\pi\right)^{4}i\frac{ig^{3}}{16\pi^{2}}\Big[F_{\nu}\,\gamma_{\mu}+F_{\mathrm{A}}\gamma_{\mu}\gamma_{5}+F_{\mathrm{M}}\,\sigma_{\mu\nu}Q_{\mathrm{I}}+F_{\mathrm{S}}Q_{\mu}+F_{\mathrm{F}}\gamma_{5}Q_{\mu}+F_{\mathrm{E}}\gamma_{5}\left(p_{1}-p_{2}\right)_{\mu}\Big]$$


Введение

В $Z \rightarrow LL\gamma$ может быть чувствительность к новой физике, которая растет с ростом инвариантной массы лептона и фотона. Можно извлекать вклад прямой вершины $ZLL\gamma$ и сравнивать с CM расчетом (петлевая поправка).

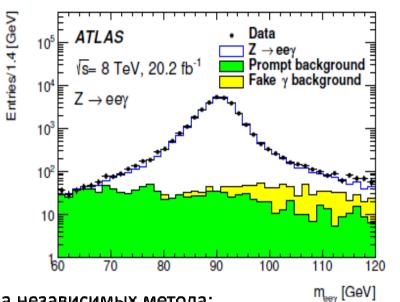
ATLAS детектор

Для анализа использована статистика 20,2 ± 0,4 фб⁻¹, набранная в эксперименте ATLAS в 2012 году при энергии сталкивающихся протонов 8 ТэВ. При каждом пересечении пучков происходило в среднем 20,7 неупругих столкновений протонов.


Условия отбора

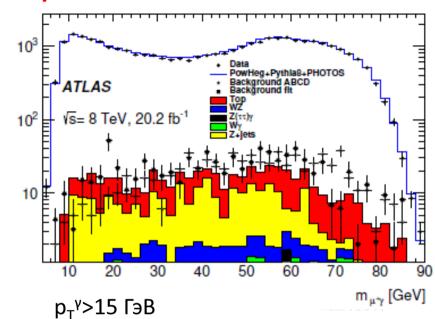
	Z->eeγ	Ζ->μμγ
Triggers	EF_2e12Tvh_loose EF_mu24i_tight EF_mu36_tight	EF_2mu13 EF_mu18_mu8_EFFS EF_mu24i_tight EF_mu36_tight
Photon selection	Photon with highest P_t ; $P_t(\gamma) > 15$ GeV $ \eta(\gamma) < 2.37$ excluding $1.37 < \eta(\gamma) < 1.52$; pass tight ID $\Delta R(\gamma, I) > 0.4$ (0.3); topoEtcone40(γ) < 4 GeV	
Lepton selection	P _t (e)>10 GeV*; Loose e; η(e) < 2.47; topoEtcone40(e)/E _t < 0.3	P _t (μ)>10 GeV; η(μ) < 2.7; topoEtcone40(μ)/E _t < 0.2
Invariant mass At least 1 photon +2 e with opposite sign $Max(P_{t1},P_{t2})>25$ GeV 20 GeV $< M(ee) < 80$ GeV; 80 GeV $< M(ee\gamma) < 100$ GeV;		At least 1 photon +2 μ with opposite sign Max(P _{t1} ,P _{t2})>25 GeV 20 GeV< M(μμ) < 80 GeV; 80 GeV < M(μμγ) < 100 GeV;

 $\Delta R \equiv \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2}$


^{*} $P_t(e) > 13$ GeV for electrons triggered with EF_2e12Tvh_loose (18 events in data and 208 events in MC with $P_t < 13$ GeV)

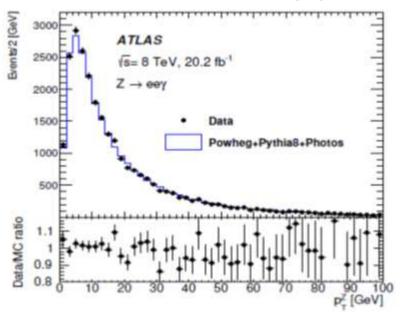
Отбор событий процесса $Z \rightarrow 2I\gamma$

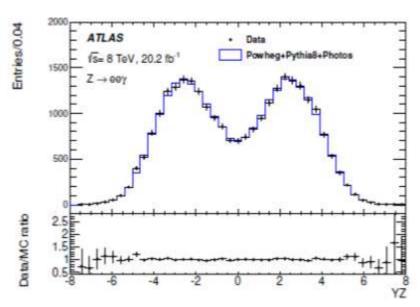
Вычитание фона


Entries/2 [GeV]

Два независимых метода:

 Фит М(llγ) распределения в каждом бине по М(lγ):

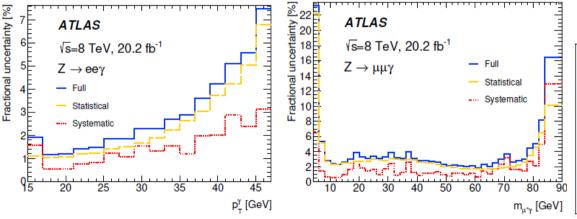

- форма распределения берется из моделирования;
- оцениваются все виды фонов, включая ложные фотоны;
- Изучение формы (back-up слайды 36-38)
- 2) ABCD метод (фон loose not isolated photons):
- Нормировка prompt фотонов из МС
- Нормировка ложных фотонов (Z+jets/ $tar{t}$) из данных вне пика

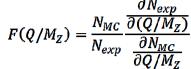


Число событий можно сравнить с LEP, где было 334 событий при $E_T > 150 \text{ M} \Rightarrow B$. LHC — это фабрика Z-бозонов.

Channel	$Z \rightarrow ee\gamma$	$Z \rightarrow \mu \mu \gamma$
Data	30571	34948
Prompt background	360 ± 40	290 ± 50
Fake γ background	450 ± 90	500 ± 90
Total background	810 ± 100	790 ± 100
$Z \rightarrow ll\gamma$ expected signal	28990 ± 990	34530 ± 1100

Вклад КХД в начальном состоянии

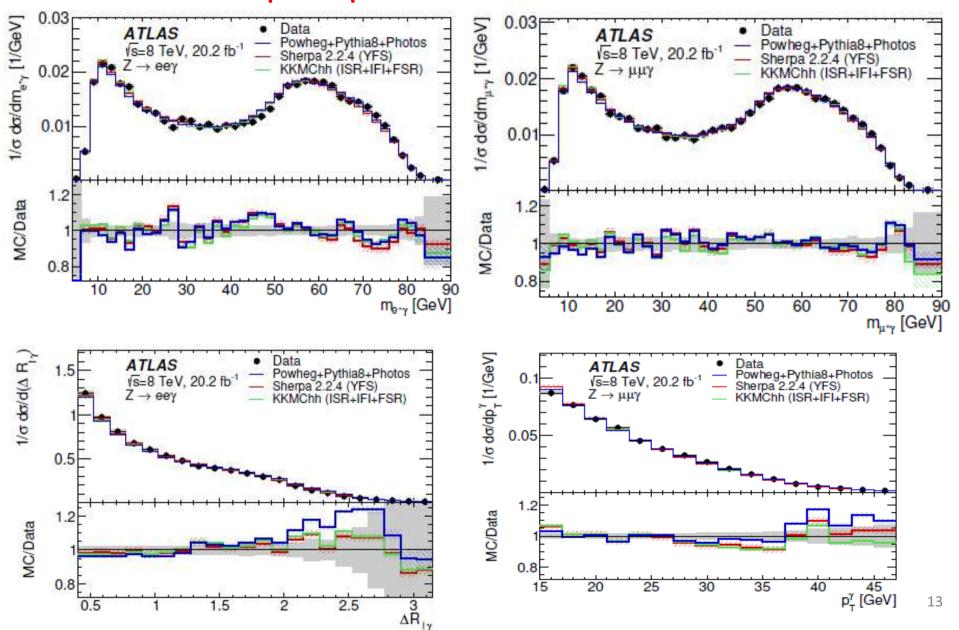



Одной из важнейших задач данного анализа было исключить влияние поправок сильного взаимодействия в начальном состоянии при рождении Z-бозона. pT_Z — хорошо моделируется; перевзвешивание по pT_Z сдвигает измеряемые распределения на 0.5%. Для оценки остаточной неопределенности, перевзвешивалось распределение по YZ, неопределенность составила 0.3%. Дополнительно изучались угловые переменные, чувствительные к поляризации рождающегося Z-бозона - это полярный θ_{CS} и азимутальный ϕ_{CS} углы положительного лептона в специальной системе Коллина-Соппера. Величина сдвига < 0.2%.

Систематические неопределенности

Цель нашего анализа - нормированные дифференциальные сечения. Интегральные сечения значительно точнее рассчитываются теоретически.

Uncertainty source	$Z \rightarrow ee\gamma$ channel	$Z \rightarrow \mu \mu \gamma$ channel	
Experimental			
Energy/momentum scale and resolution	0.2%	0.2%	
Efficiency	0.3%	0.3%	
Unfolding	< 0.1%	< 0.1%	
Background subtraction	0.3%	0.3%	
Theory			
PDF	< 0.1%	< 0.1%	
QCD scale variations	0.1%	0.1%	
QCD modelling	0.3%	0.3%	
Total	0.6%	0.6 %	


- •Unfolding Байесовский подход с 3 итерациями
- PowHeg NLO MC использовалось для оценки эффективностей
- • $m_{l\pm\gamma}$, ΔR , p_t^{γ} всего 4 переменные

Фазовый объем

Photon with
$$p_{\rm T} > 15~{\rm GeV}$$

$$|\eta_{\gamma}| < 2.37~{\rm excluding}~1.37 < |\eta_{\gamma}| < 1.52$$
 Leptons with $p_{\rm T} > 25$, 10 GeV
$$|\eta_{\mu}| < 2.7$$

$$|\eta_{e}| < 2.47$$
 At least one photon + one pair of same-flavour opposite-sign leptons
$$\Delta R_{l\gamma} > 0.4$$

$$20 < m_{ll} < 80~{\rm GeV}$$

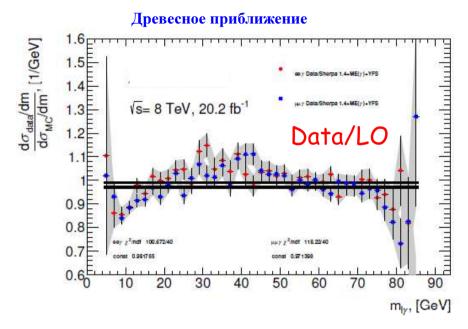
$$80 < m_{ll\gamma} < 100~{\rm GeV}$$

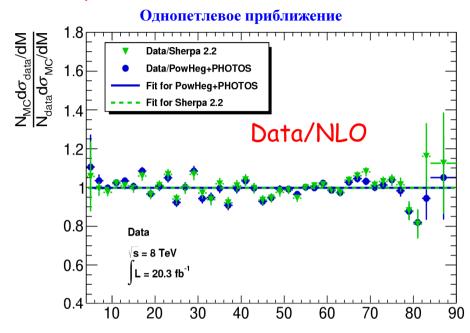
 $e - \mu$ difference for F(Q/M_z) -0.0011 ± 0.0085 ± 0.000065 The χ^2 of the $e - \mu$ difference is 28.3/42

Результаты: дифференциальные распределения Z→2lγ

Полные сечения в доступном фазовом объеме

Полные сечения не являлись основной целью анализа, так как они значительно точнее рассчитываются теоретически.

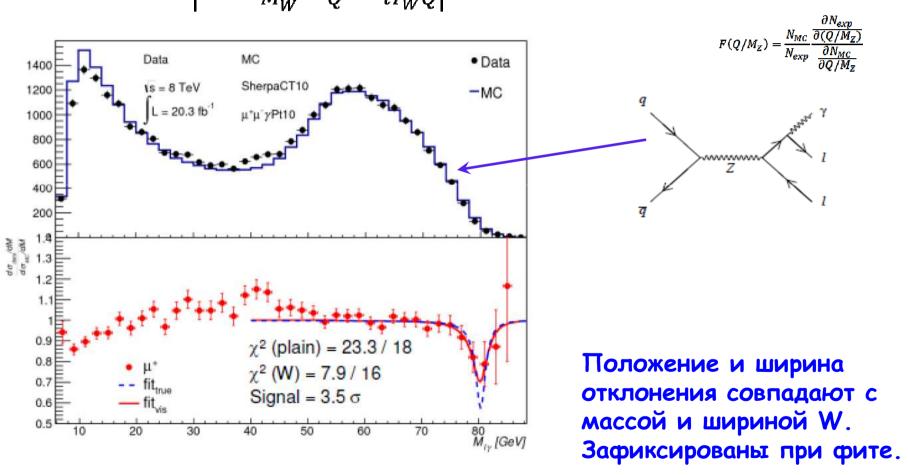

Uncertainty	$Z \rightarrow ee\gamma$	$Z \rightarrow \mu\mu\gamma$
Statistical	0.7%	0.7%
Experimental systematic	3.5%	2.3%
Luminosity	1.9%	1.9%
QCD theory	0.3%	0.3%
Total	4.1%	3.1 %


Предсказания PowHeg+PHOTOS

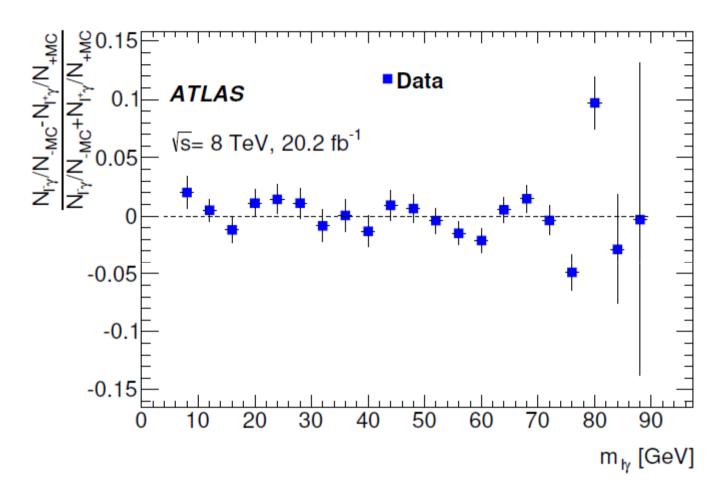
Process	Measurement [pb]	Prediction [pb]
$Z \rightarrow ee\gamma \ (m_{ll} > 20 \ {\rm GeV})$	$3.03 \pm 0.02 \text{ (stat)} \pm 0.11 \text{ (syst)} \pm 0.06 \text{ (lumi)}$	2.94 ± 0.10
$Z \rightarrow \mu\mu\gamma \ (m_{ll} > 20 \ {\rm GeV})$	$3.17 \pm 0.02 \text{ (stat)} \pm 0.07 \text{ (syst)} \pm 0.07 \text{ (lumi)}$	3.20 ± 0.10
$Z \rightarrow ee\gamma \ (m_{ll} > 45 \ {\rm GeV})$	$2.70 \pm 0.02 \text{ (stat)} \pm 0.10 \text{ (syst)} \pm 0.06 \text{ (lumi)}$	2.61 ± 0.10
$Z \rightarrow \mu\mu\gamma \ (m_{ll} > 45 \text{ GeV})$	$2.84 \pm 0.02 \text{ (stat)} \pm 0.06 \text{ (syst)} \pm 0.06 \text{ (lumi)}$	2.84 ± 0.10
$Z \rightarrow ee\gamma (20 < m_{ll} < 45 \text{ GeV})$	$0.326 \pm 0.005 \text{ (stat)} \pm 0.011 \text{ (syst)} \pm 0.006 \text{ (lumi)}$	0.335 ± 0.01
$Z \rightarrow \mu\mu\gamma \ (20 < m_{ll} < 45 \text{ GeV})$	$0.321 \pm 0.005 \text{ (stat)} \pm 0.006 \text{ (syst)} \pm 0.006 \text{ (lumi)}$	0.355 ± 0.01

ееү и µµү имеют разное полное сечение в одном и том же фазовом объеме из-за однопетлевых поправок КЭД. Этот эффект согласуется с предсказаниями теории.

Отношение данных к моделированию (LO/NLO)

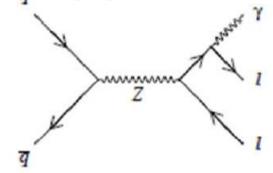

Отклонение данных от древесного приближения составляет порядка 15%.

Однопетлевое приближение КЭД+КХД М(µ+γ) [GeV] описывает данные значительно лучше.

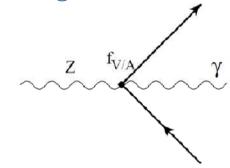

Генератор	χ^2/ndf	р-значение	Генератор	χ^2/ndf	р-значение
Sherpa 1.4 (LO) $Z \to e^+e^-\gamma$	112.96/41	$1.2 \cdot 10^{-8}$	Sherpa 1.4 (LO) $Z \to \mu^+ \mu^- \gamma$	109.04/41	$4.3 \cdot 10^{-8}$
Sherpa 2.2 $Z \to e^+e^-\gamma$	87.71/41	$3.0 \cdot 10^{-5}$	Sherpa 2.2 $Z \to \mu^+ \mu^- \gamma$	45.42/41	0.29
PowHeg+PHOTOS $Z \to e^+e^-\gamma$	66.37/41	$7.3 \cdot 10^{-3}$	PowHeg+PHOTOS $Z \to \mu^+\mu^-\gamma$	44.80/41	0.32

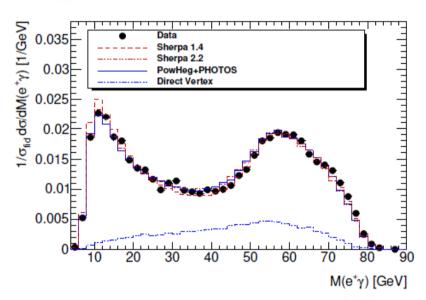
Отклонение в Data/MC при M(Lγ)=M(W)

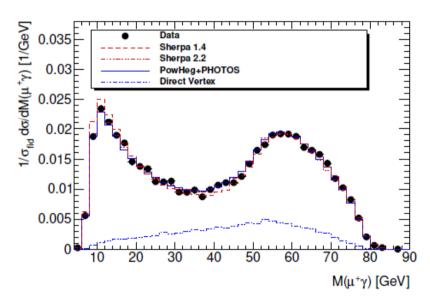
$$F_{model}(Q) = \left| 1 + A rac{arGamma_W M_W e^{i\phi}}{M_W^2 - Q^2 - iarGamma_W Q}
ight|^2 \otimes f_{resol}(\Delta Q)$$
 Q – инвариантная масса Іү



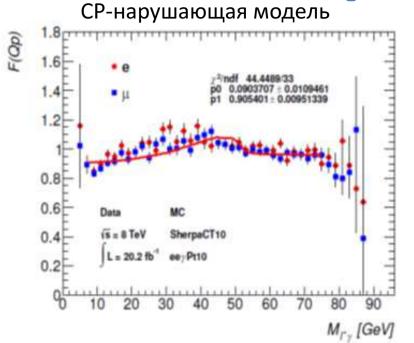
Зарядовая асимметрия

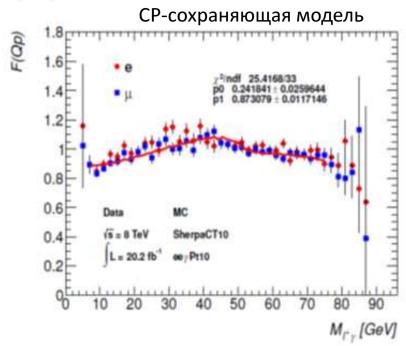



Зарядовая асимметрия не видна в большей части распределения $M(L\gamma)$ <70 GeV. Каналы ееү и $\mu\mu\gamma$ объединены.


Модели прямой вершины

Подробности в нашей работе Письма в ЭЧАЯ 2024, 4.

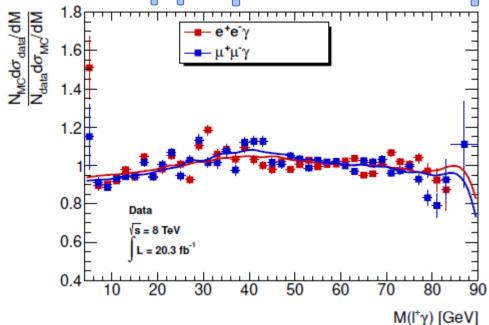

$$[f_{Vl}\bar{l}(x)\gamma^{\nu}l(x) + f_{Al}\bar{l}(x)\gamma^{\nu}\gamma^{5}l(x)]Z^{\mu}(x)[\partial_{\mu}A_{\nu}(x) - \partial_{\nu}A_{\mu}(x)], \qquad (1)$$


D. Bruss, O. Nachtmann, P. Overmann, Eur. Phys. J. C 1, 191 (1998). Эффективное взаимодействие 10.1007/BF01245808.

$$\varepsilon_{\mu\nu\lambda\rho}[f_{Vl}\bar{l}(x)\gamma^{\nu}l(x) + f_{Al}\bar{l}(x)\gamma^{\nu}\gamma^{5}l(x)]Z^{\mu}(x)[\partial_{\lambda}A_{\rho}(x) - \partial_{\rho}A_{\lambda}(x)]. \tag{2}$$

Sidney D. Drell, SLAC-PUB-3308 March 1984 (T/E).

Выбор модели



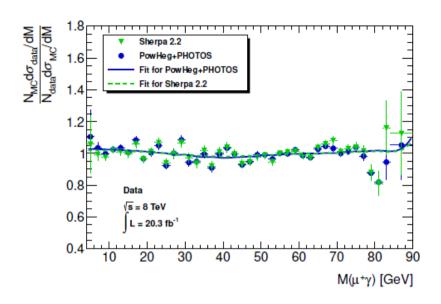
Отношение данных к предсказанию LO SM (нормированное F(M)). Слева аппроксимация CP-нарушающей моделью, справа аппроксимация CP-сохраняющей моделью. $f_{model} \ = \ (1 \ - \ p) \ \cdot \ f_{MC} \ + \ p \ \cdot \ f_{corr}$

 ${\sf CP}$ -сохраняющая модель имеет лучший χ^2 и визуально лучше описывает данные. В дальнейшем рассматривается только ${\sf CP}$ -сохраняющая модель.

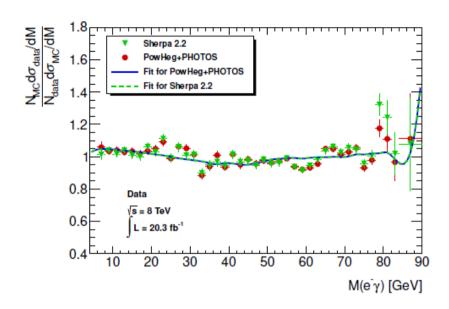
$$F(M(l^+\gamma)) = \frac{N_{MC} \frac{dN_{exp}}{dM(l^+\gamma)}}{N_{exp} \frac{dN_{MC}}{dM(l^+\gamma)}}.$$

Вклад прямой вершины в данных

Отношение экспериментальных данных к предсказаниям LO SM Sherpa 1.4. Линии — вклад CP-сохраняющего взаимодействия. Значения вероятности распада Z→IIγ, определенные по формуле (4) из вклада прямой вершины р.


$$Br(Z \to e^+e^-\gamma) = (3.81 \pm 0.53) \cdot 10^{-5},$$

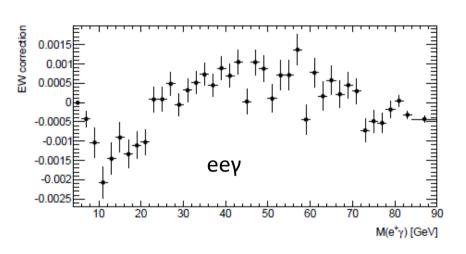
 $Br(Z \to \mu^+\mu^-\gamma) = (3.99 \pm 0.47) \cdot 10^{-5}$

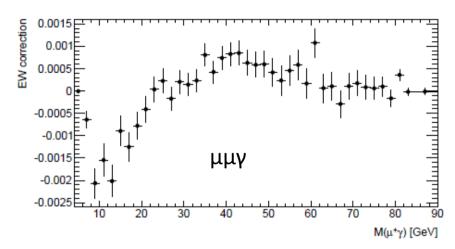

$$Br(Z \to l^+ l^- \gamma) = \frac{\sigma_{3body}(Z \to 2l\gamma)}{\sigma(Z \to all)} = \frac{p}{\varepsilon} \cdot \frac{\sigma_{SM}(Z \to 2l\gamma)}{\sigma(Z \to 2l)} \cdot Br(Z \to 2l), (4)$$

Tаблица~3. Результаты аппроксимации вклада прямой вершины взаимодействия для процесса $e^+e^-\gamma$ с использованием моделирования Sherpa 1.4 в древесной приближении по КЭД.

Канал	Перем.	Вклад вершины	χ^2/ndf	χ_0^2/ndf	Значимость
$e^+e^-\gamma$	$M(l^+\gamma)$	$+0.093 \pm 0.012$	81.2/41	113.0/40	5.6
$\mu^+\mu^-\gamma$	$M(l^+\gamma)$	$+0.111 \pm 0.010$	48.0/41	108.9/40	7.8
$e^+e^-\gamma$	$M(l^-\gamma)$	$+0.095 \pm 0.011$	59.7/41	96.3/40	6.1
$\mu^+\mu^-\gamma$	$M(l^-\gamma)$	$+0.088 \pm 0.010$	63.6/41	101.6/40	6.2

Отклонение PowHeg и Sherpa 2.2 от данных

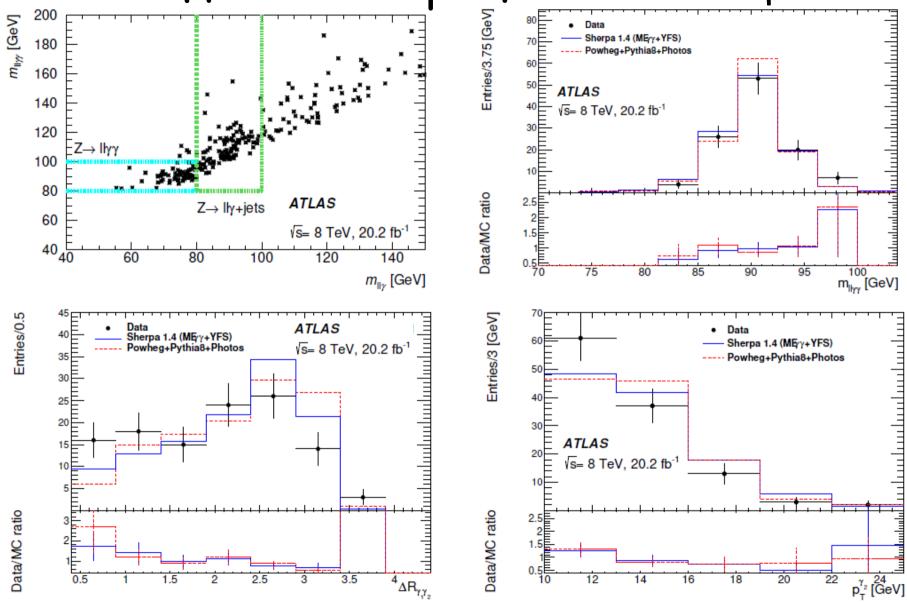



Tаблица 4. Результаты аппроксимации вклада прямой вершины взаимодействия для процесса $e^+e^-\gamma$ с использованием моделирования Sherpa 2.2 и PowHeg в однопетлевом приближении по КЭД.

Канал	Перем.	Генератор	Вклад вершины	χ^2/ndf	χ_0^2/ndf	Значимость
$e^+e^-\gamma$ $M(l^+\gamma)$	Sherpa 2.2	-0.074 ± 0.013	72.1/41	87.7/40	4.0	
ε ε γ	$M(t \land \gamma)$	PowHeg+PHOTOS	-0.058 ± 0.009	46.6/41	66.4/40	4.4
u+u-a	$M(l^+\gamma)$	Sherpa 2.2	-0.027 ± 0.011	42.2/41	45.4/40	1.8
$\mu^+\mu^-\gamma \mid M(l^+\gamma)$	${\color{red} \text{PowHeg+PHOTOS}}$	-0.031 ± 0.008	37.4/41	44.8/40	2.7	
$e^+e^-\gamma$	$M(1-\alpha)$	Sherpa 2.2	-0.046 ± 0.012	61.1/41	68.4/40	2.7
eey	$M(l^-\gamma)$	PowHeg+PHOTOS	-0.056 ± 0.009	39.6/41	57.4/40	4.2
$\mu^+\mu^-\gamma$	$M(l^-\gamma)$	Sherpa 2.2	-0.049 ± 0.011	56.9/41	67.2/40	3.2
$\mu \cdot \mu \cdot \gamma$	$IVI(t-\gamma)$	PowHeg+PHOTOS	-0.048 ± 0.008	45.1/41	62.2/40	4.1

ZI

EW поправка в KKMChh (DIZET) и полная значимость отклонения DATA/MC


Значение разности между предсказаниями ККМСhh и PowHeg+PHOTOS в зависимости от инвариантной массы лептона и фотона, разность соответствует EW поправке присутствующей в ККМСhh для процесса $Z \to l^+l^-$, слева — канал $Z \to e^+e^-\gamma$, справа — канал $Z \to \mu^+\mu^-\gamma$.

Если сложить χ^2 из таблицы 4 для мюонов и электронов и учесть 2 степени свободы, то значимость отклонения данных от PowHeg > 5σ , для Sherpa 2.2 > 4.7σ , причем PowHeg имеет лучше χ^2 и лучше описывает данные. Будет неожиданным, если EW поправки к процессу $Z \rightarrow II\gamma$ окажутся столь велики, чтобы объяснить расхождение между данными и моделированием (3-5%).

Условия отбора $Z\rightarrow$ 2 12γ

Photon selection $ \eta(\gamma) = \frac{1}{2} \eta(\gamma) ^{\frac{1}{2}} $	2e12Tvh_loose _mu24i_tight _mu36_tight	EF_2mu13 EF mu18 mu8 EFFS
η(γ)		EF_mu24i_tight EF_mu36_tight
	Photon with highest P_t ; $P_t(\gamma) > 15$ GeV Second photon $P_t(\gamma) > 10$ GeV $ \eta(\gamma) < 2.37$ excluding $1.37 < \eta(\gamma) < 1.52$; pass tight ID $\Delta R(\gamma, I) > 0.4$ (0.3); topoEtcone40(γ) < 4 GeV $\Delta R(\gamma, \gamma) > 0.4$	
l r	15 GeV; Loose e; n(e) < 2.47; ne40(e)/E _t < 0.3	P _t (μ)>15 GeV; η(μ) < 2.7; topoEtcone40(μ)/E _t < 0.2
o _l Max(2 photon +2 e with pposite sign P _{t1} ,P _{t2})>25 GeV eeγ) < 80 GeV;	At least 2 photon +2 μ with opposite sign Max(P _{t1} ,P _{t2})>25 GeV M(μμγ) < 80 GeV;

Выделение процесса $Z \rightarrow 212\gamma$

116 событий в обоих каналах, моделирование нормировано на 116 событий

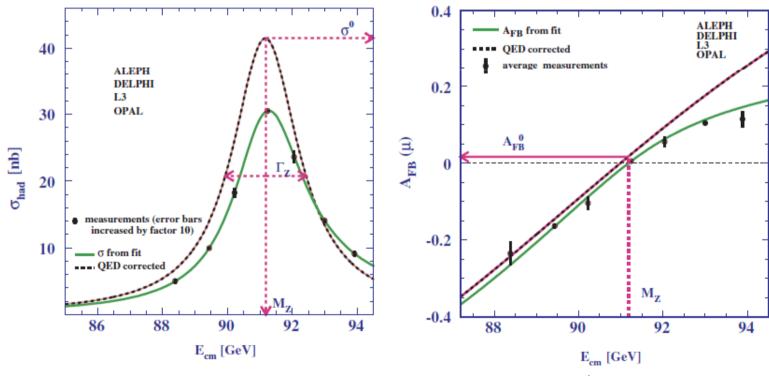
Заключение

- 1. С высокой точностью измерены дифференциальные распределения по $M(I^{\pm}\gamma)$, ΔR , p_{T}^{γ} . Средняя систематическая неопределенность 0,6%. Для описания этих распределений важны однопетлевые поправки.
- 2. Результаты качественно согласуются с предсказаниями последних версий современных генераторов PowHeg+Pythia8+PHOTOS и Sherpa 2.2.4, KKMChh. Значения χ^2 демонстрируют нестатистическое поведение.
- 3. Впервые наблюдался процесс Z→2l2γ, дифференциальные распределения для него согласуются с древесным приближением и полное сечение совпадает с предсказанием Sherpa 2.2.4.
- 4. Небольшие отклонения присутствуют в «уголках» фазового объема: $20 < M(II) < 45 \ GeV$, $M(I\gamma) \approx 80 \ GeV$, $\Delta R_{I\gamma} \sim 2.5$. Значимость отклонения при $M(I\gamma) \approx 80 \ GeV$, превышает 3σ .
- 5. Добавление вклада эффективной вершины к предсказаниям PowHeg+PHOTOS и Sherpa 2.2.4 является статистически значимым на уровне достоверности 5 и 4.7 стандартных отклонения соответственно.

25

Спасибо за внимание.

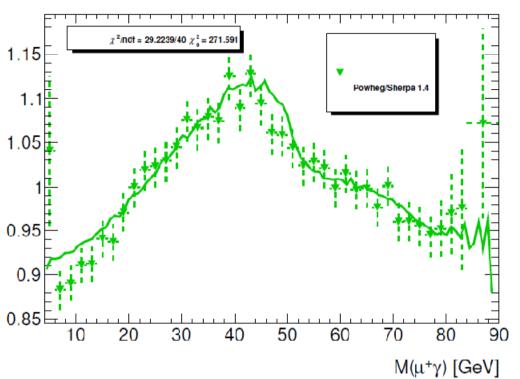
Работа поддержана Российским научным фондом (Проект № 23-22-00193).

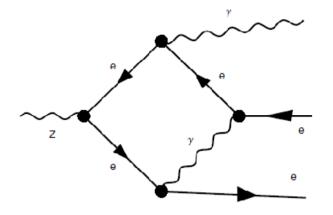

Введение

Что измеряют в пике Z бозона?

LEP-I Форма линии и зарядовая асимметрия.

Извлекают: массу Z, ширину Z, полное сечение в пике, форм-факторы вершины $a_L, v_L, \sin \theta_W$.


LHC: полное сечение, угловое распределение в системе Коллина-Соппера, дифференциальные распределения (p_T^Z). Извлекают: угловые коэффициенты, $\sin\theta_W$



arXiv:1012.2367v2 [hep-ex] 11 Jan 2011

CERN-PH-EP/2010-095

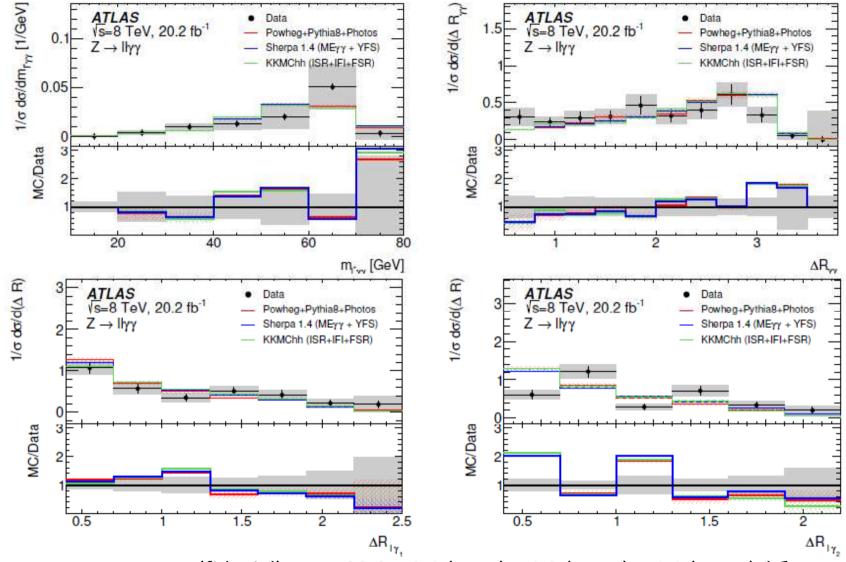
Вклад прямой вершины в NLO QED

$$F(M(l^+\gamma)) = \frac{N_{MC} \frac{dN_{exp}}{dM(l^+\gamma)}}{N_{exp} \frac{dN_{MC}}{dM(l^+\gamma)}}$$

Отношение распредления по инвариантной массе лептона и фотона для однопетлевого расчета PowHeg+PHOTOS к древесному приближению Sherpa 1.4 ME. Линия – вклад эффективной вершины Zllү (модель с поправкой).

$$f_{model} = (1 - p) \cdot f_{MC} + p \cdot f_{cor}$$

 f_{model} — нормированное распределение для модели с поправкой f_{MC} — нормированное распределение исходного моделирования f_{cor} — нормированное распределение для поправки, p — доля поправки


Обратная свертка для $Z \rightarrow 2l2y$ (unfolding)

- Переменные $m_{l+\gamma\gamma}$, $m_{l-\gamma\gamma}$, ΔR (I, γ_1), $p_T(\gamma_1)$, $\Delta R(I, \gamma_2)$, $p_T(\gamma_2)$, $\Delta R(\gamma_1, \gamma_2)$
- Unfolding tool Баесовский алгоритм с одной итерацией
- Количество фоновых событий <1
- •Sherpa 2I2 γ MC ME $_{vv}$ для оценки детекторных эффектов
- •Статистика в 2µ2ү и 2е2ү каналах объединена

```
Два фотона с p_T > 15 и 10 ГэВ, соответственно |\eta(\gamma)| < 2.37 исключая 1.37 < |\eta(\gamma)| < 1.52 Два лептона одного поколения с противоположными знаками с p_T > 25 и 15 ГэВ |\eta(\mu)| < 2.7 или |\eta(e)| < 2.47 \Delta R_{|\gamma} > 0.4 для обоих фотонов, \Delta R_{\gamma\gamma} > 0.4 M_{||\gamma} < 80 ГэВ для обоих фотонов
```

Фазовый объем к которому приводятся результаты измерения, скорректированные на разрешение детектора и эффективность регистрации (fiducial volume).

Дифференциальные распределения для $Z \rightarrow 2|2\gamma$

Измеренное сечение (fiducial) : 22.2 ± 2.1 (стат.) ± 1.2 (эксп.) ± 4.1 (теор.) фб.

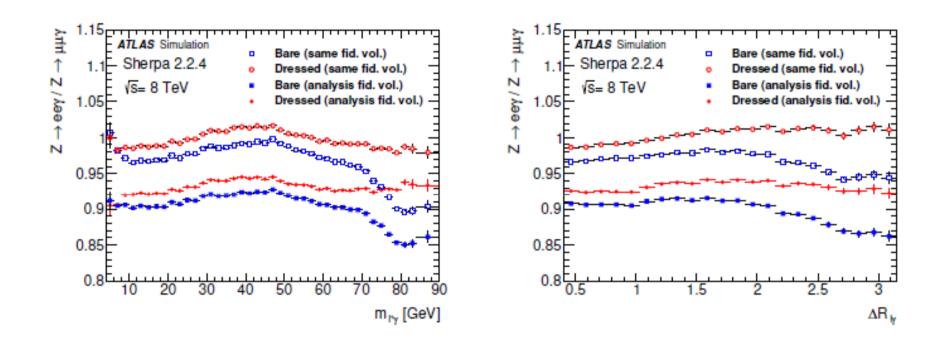
Предсказание Sherpa 2.2.4 : 20.9 ± 0.2 (стат.) фб.

PowHeg + Pythia8 + PHOTOS: 9.4 ± 0.1 (стат.) фб.

Sherpa 1.4 Me_{vv}: 9.9 ± 0.1 (стат.) фб

Data and MC samples used

- Data 2012, 8 TeV, pp collisions 20.2 fb^{-1}
- Powheg+Pythia8+Photos MC
- Sherpa v.1.4 (Run I) MC (1 photon from ME tree level, M(21) > 40 GeV)
- Sherpa v.1.4 (Run I 212γ) MC (2 photon from ME tree level)


For comparisons at truth level:

- Sherpa v.2.2.4 (YFS QED FSR NLO)
- KKMChh (LO QCD)
- a) KKMChh and Photos are based on the initial KKMC developed for LEP. Powheg+Photos has only FSR (including ME corrections bringing it close to NNLO QED, KKMC+Herwig has ISR and FSR including photon resummation for both plus IFI, the first complete calculation of such processes at the LHC.
- b) Sherpa is based on YFS resummation, very similar to Photos.

A special Sherpa 1.4 MEγ and MEγγ versions were used to predict exact tree-level Z to llγ, llγγ final states. Sherpa 1.4 and 2.2 are identical for QED treatment.

Motivation

At high orders electrons and muons radiate differently, the difference is larger for "bare" particles.

The fiducial cross section will be different for e and μ . The largest e- μ difference is located at Mly>80 GeV.