Aspects of divergences in six-dimensional $\mathcal{N}=(1,1)$ supersymmetric gauge theories

I.L. Buchbinder

BLTP, JINR, Dubna

Scientific session of Nuclear Physics section of Physics Division of RAS, PHYSICS OF FUNDAMENTAL INTERACTIONS, April, 1 - 5, 2024, JINR, Dubna, Russia

Goal

Brief review of methods and results on study of divergences in 6D extended supersymmetric gauge theories.

Based on a series of papers published during last years in collaboration with E.A. Ivanov, B.M. Merzlikin and K.V. Stepanayatz.

Two-loop divergences, JHEP 05 (2023) 089.

Basic Motivations. Superstrings

Study of higher dimensional supersymmetric field theories related to superstring theory.

Specific feature of the superstring theory is existence of so called D-branes which are the D+1 dimensional surfaces in the ten-dimensional space-time. In the low-energy limit the D-brane is associated with D+1-dimensional extended supersymmetric gauge theory. Therefore, study of low-energy limit of superstring theory can be related to extended supersymmetric field theory in various dimensions.

In this sense, D3-brane is associated with D4, $\mathcal{N}=4$ SYM theory. D5-brane is associated with D6, $\mathcal{N}=(1,1)$ SYM theory.

Basic Motivations. Study of quantum field models with large number of symmetries

- Explicit symmetries: gauge symmetry, global symmetries, supersymmetries.
- Quantization procedure with preservation of all explicit symmetries.
- Perturbation theory with preservation of all explicit symmetries.
- Hidden (on-shell) symmetries. Preservation of hidden symmetries.
- Divergences, renormalization and effective actions.
- Construction of the new extended supersymmetric invariants as the the quantum contributions to effective action

Basic Motivation. General Problems and Results

Some problems of higher dimensional supersymmetric gauge theories.

- 1. Describing the quantum structure of six-dimensional supersymmetric gauge theories dimensionally reduced from superstrings (initiated by N. Seiberg, E. Witten, 1996; N. Seiberg, 1997).
- 2. Description of the interacting multiple M5-branes.
 - ullet Hypothetic M-theory is characterized by two extended objects: M2-brane and M5-brane in eleven dimensional space.
 - The field description of interacting multiple M2-branes is given by Bagger-Lambert-Gustavsson (J. Bagger, N. Lambert, 2007; 2008. A. Gustavsson, 2009) theory which is 3D, $\mathcal{N}=8$ supersymmetric gauge theory.
 - ullet Lagrangian description of the interacting multiple M5-branes is not constructed so far.

Divergences in higher dimensional SYM theories

- 3. Problem of miraculous cancelation of some on-shell divergences in higher dimensional maximally supersymmetric gauge theories (theories with 16 supercharges). All these theories are non-renormalizable by power counting.
 - Field limit of superstring amplitude shows that 6D, $\mathcal{N}=(1,1)$ SYM theory is on-shell finite at one-loop (M.B. Green, J.H. Schwarz, L. Brink, 1982).
 - Analysis based on on-shell supersymmetries, gauge invariance and field redefinitions (P.S. Howe, K.S. Stelle, 1984, 2003; G. Bossard, P.S. Howe, K.S. Stelle, 2009).
 - Direct one-loop and two-loop component calculations (mainly in on-shell and in bosonic sector (E.S. Fradkin, A.A. Tseytlin, 1983; N. Marcus, A. Sagnotti, 1984, 1985.)
 - Direct calculations of scattering amplitudes in 6D, $\mathcal{N}=(1,1)$ theory up to five loops and in D8, 10 theories up to four loops (L.V. Bork, D.I. Kazakov, M.V. Kompaniets, D.M. Tolkachev, D.E. Vlasenko, 2015).

Results: On-shell divergences in maximally extended 6D SYM theory start at three loops. One-shell divergences in 8D and 10D SYM theories start at one loop.

General aims and approaches

The problems we are dealing with is aimed at studying the off-shell divergence structure. To understand, what is a reason that the divergences at one and two loops are proportional to the classical equations of motion and why, starting from three loops, this is violated.

Preservation of manifest supersymmetry: off-shell superfield formulation. Best formulation for 6D supersymmetric gauge theories is a harmonic superspace approach. In the case of $\mathcal{N}=(1,1)$ theory it is provides explicit off-shell $\mathcal{N}=(1,0)$ supersymmetry and hidden on-shell $\mathcal{N}=(0,1)$ supersymmetry.

Preservation of classical gauge invariance in quantum theory: harmonic superfield background field method.

Preservation of explicit gauge invariance and $\mathcal{N}=(1,0)$ supersymmetry at all steps of loop calculations: superfield proper-time methods.

$6D, \mathcal{N} = (1,1)$ SYM theory, basic superfields

6D superalgebra is described by two independent supercharges. The simplest representations corresponds to $\mathcal{N}=(1,0)$ and $\mathcal{N}=(0,1)$ supersymmetries. In this sense, the maximally extended rigid supergauge theory is the $\mathcal{N}=(1,1)$ SYM theory.

 $\mathcal{N}=(1,0)$ harmonic superspace:

Bosonic (commuting) coordinates $x^M, (M=0,1,2,3,4,5); u^{\pm i} (i=1,2).$

Fermionic (anticommuting) coordinates θ^a_i , (a=1,2,3,4).

Analytic subspace $\zeta = (x_A{}^M, \, \theta^{\pm \, a}, \, u^{\pm \, i}).$

 $\theta^{\pm a} = \theta_i^a u^{\pm i}.$

Analytic subspace is closed under the $\mathcal{N}=(1,0)$ supersymmetry.

Basic $\mathcal{N}=(1,0)$ harmonic superfields:

Hypermultiplet is described by analytic superfield $q^+(\zeta)$.

On-shell field contents: scalar field $f^i(x)$ and the spinor field $\psi_a(x)$)

Vector multiplet is described by analytic superfield V^{++} .

On-shell field contents: vector field and spinor field.

$6D, \mathcal{N} = (1,1)$ SYM theory, action

Theory of $\mathcal{N}=(1,0)$ non-Abelian vector multiplet coupled to hypermultiplet, (E.I. Ivanov, A.V. Smilga, B.M. Zupnik, Nucl.Phys. B (2005)).

Action

$$S[V^{++},q^+] = \frac{1}{f^2} \sum_{n=2}^{\infty} \frac{(-i)^n}{n} \operatorname{tr} \int d^{14}z \, du_1 \dots du_n \, \frac{V^{++}(z,u_1) \dots V^{++}(z,u_n)}{(u_1^+ u_2^+) \dots (u_n^+ u_1^+)} \\ - \int d\zeta^{-4} du \tilde{q}^+ \nabla^{++} q^+$$

Harmonic covariant derivative

$$\nabla^{++} = D^{++} + iV^{++}$$

Equations of motion

$$\frac{1}{2f^2}F^{++} - i\tilde{q}^+q^+ = 0, \qquad \nabla^{++}q^+ = 0.$$

$$F^{++} = (D^+)^4 V^{--}, D^{++} V^{--} - D^{--} V^{++} + i[V^{++}, V^{--}] = 0$$

$\mathcal{N} = (1,1)$ SYM theory

 $\mathcal{N}=(1,1)$ SYM theory can be formulated in terms of $\mathcal{N}=(1,0)$ harmonic superfields as the $\mathcal{N}=(1,0)$ vector multiplet coupled to hypermultiplet in adjoint representation. The theory is manifestly $\mathcal{N}=(1,0)$ supersymmetric and possesses the extra hidden $\mathcal{N}=(0,1)$ supersymmetry.

Action

$$S[V^{++}, q^{+}] = S_{SYM}[V^{++}] + S_{HYPER}[q^{+}, V^{++}]$$

- ullet The action is manifestly $\mathcal{N}=(1,0)$ supersymmetric.
- \bullet The action is invariant under the transformations of extra hidden $\mathcal{N}=(0,1)$ supersymmetry

$$\delta V^{++} = \epsilon^+ q^+, \qquad \delta q^+ = -(D^+)^4 (\epsilon^- V^{--})$$

where the transformation parameter $\epsilon_A^{\pm}=\epsilon_{aA}\theta^{\pm A}.$

General strategy

- We start with harmonic superfield formulations of vector multiplet coupled to hypermultiplet.
- Effective action is formulated in the framework of the harmonic superfield background field method. It provides manifest $\mathcal{N}=(1,0)$ supersymmetry and gauge invariance of effective action under the classical gauge transformations.
- Effective action can be calculated on the base of superfield proper-time technique. It provides preservation of manifest $\mathcal{N}=(1,0)$ supersymmetry and manifest gauge invariance at all steps of calculations.
- The effective action can also be calculated perturbatively on the base of Feynman diagrams in superspace (supergraph technique).
- One-loop analysis. We study the model, where the $\mathcal{N}=(1,0)$ vector multiplet interacts with hypermultiplet in the arbitrary representation of the gauge group. Then, we assume in the final result for one-loop divergences, that this representation is adjoint what corresponds to $\mathcal{N}=(1,1)$ SYM theory. Finite one-loop effective action without renormalization.
- Two-loop analysis. All the possible divergences can be listed, using the the superfield power counting and then they can be calculated in the framework of the background field method.

Background field method

 \bullet The superfields V^{++},q^+ are splitting into the sum of the background superfields V^{++},Q^+ and the quantum superfields v^{++},q^+

$$V^{++} \to V^{++} + fv^{++}, \qquad q^+ \to Q^+ + q^+$$

- The action is expending in a power series in quantum fields. As a result, we obtain the initial action $S[V^{++},q^+]$ as a functional $\tilde{S}[v^{++},q^+;V^{++},Q^+]$ of background superfields and quantum superfields.
- The gauge-fixing function are imposed only on quantum superfiled

$$\mathcal{F}_{\tau}^{(+4)} = D^{++} v_{\tau}^{++} = e^{-ib} (\nabla^{++} v^{++}) e^{ib} = e^{-ib} \mathcal{F}^{(+4)} e^{ib} \ ,$$

where b(z) is a background-dependent gauge bridge superfield and τ means τ -frame. In the non-Abelian gauge theory, the gauge-fixing function is background-dependent.

• Faddev-Popov procedure is used. One obtains the effective action $\Gamma[V^{++},Q^+]$ which is gauge invariant under the classical gauge transformations.

Background field method

• The effective action $\Gamma[V^{++},Q^+]=S[V^{++},Q^+]+\bar{\Gamma}[V^{++},Q^+]$ is written in terms of path integral

$$e^{i\bar{\Gamma}[V^{++},Q^{+}]} = Det^{1/2} \ \widehat{\Box} \ \int \mathcal{D}v^{++} \, \mathcal{D}q^{+} \, \mathcal{D}\mathbf{b} \, \mathcal{D}\mathbf{c} \, \mathcal{D}\varphi \ e^{iS_{quant}[v^{++},q^{+},\mathbf{b},\mathbf{c},\varphi,V^{++},Q^{+}]}$$

• The quantum action S_{quant} has the structure

$$S_{quant} = S[V^{++} + fv^{++}, Q^{+} + q^{+}] - S[V^{++}, Q^{+}] - S'[V^{++}, Q^{+}](fv^{++}, q^{+}) +$$

$$+ S_{GF}[v^{++}, V^{++}] + S_{FP}[\mathbf{b}, \mathbf{c}, v^{++}, V^{++}] + S_{NK}[\varphi, V^{++}].$$

- Gauge fixing term $S_{GF}[v^{++}, V^{++}]$, Faddeed-Popov ghost action $S_{FP}[\mathbf{b}, \mathbf{c}, v^{++}, V^{++}]$, Nielsen-Kalosh ghost action $S_{NK}[\varphi, V^{++}]$
- Operator

$$\widehat{\Box} = \eta^{MN} \nabla_M \nabla_N + W^{+a} \nabla_a^- + F^{++} \nabla^{--} - \frac{1}{2} (\nabla^{--} F^{++})$$

• All ghosts are the analytic superfields

Background field method

One-loop approximation. Only quadratic in quantum fields and ghosts terms are taken into account in the path integral for effective action. It gives after some transformation the one-loop contribution $\Gamma^{(1)}[V^{++},Q^+]$ to effective action in terms of formal functional determinants in analytic subspace of harmonic superspace

$$\begin{split} \Gamma^{(1)}[V^{++},Q] &= \frac{i}{2} Tr_{(2,2)} \ln[\delta^{(2,2)} \ \widehat{\Box}^{AB} \ -2 f^2 Q^{+\,m} (T^A G_{(1,1)} T^B)_m{}^n Q_n^+] - \\ &- \frac{i}{2} Tr_{(4,0)} \ln \ \widehat{\Box} \ -i Tr \ln(\nabla^{++})_{\mathrm{Adj}}^2 + \frac{i}{2} Tr \ln(\nabla^{++})_{\mathrm{Adj}}^2 + i Tr \ln \nabla_{\mathrm{R}}^{++} \end{split}$$

As usual, TrlnO = lnDetO, Tr means the functional trace in analytic subspace and matrix trace.

 $(T^A)_m{}^n$ are are generators of the representation for the hypermultiplet. The $G_{(1,1)}$ is the Green function for the operator ∇^{++} .

Index A numerates the generators, $V^{++}=V^{++A}T^A$. Operator $\widehat{\Box}$ acts on the components V^{++A} as $(\widehat{\Box}V^{++})^A=\widehat{\Box}^{AB}V^{++B}$

Adj and R mean that the corresponding operators are taken in the adjoint representation and in the representation for hypermultiplet.

Manifestly covariant calculation

Calculating the one-loop divergences of superfield functional determinants is carried out in the framework of proper-time technique (superfield version of Schwinger-De Witt technique). Such technique allows us to preserve the manifest gauge invariance and manifest $\mathcal{N}=(1,0)$ supersymmetry at all steps of calculations.

General scheme of calculations

• Proper-time representation

$$TrlnO \sim Tr \int_0^\infty \frac{d(is)}{(is)^{1+\varepsilon}} e^{isO_1} \delta(1,2)|_{2=1}$$

- ullet Here s is the proper-time parameter and arepsilon is a parameter of dimensional regularization.
- Typically the $\delta(1,2)$ contains $\delta^8(\theta_1-\theta_2)$, which vanishes at $\theta_1=\theta_2$
- Typically the operator O contains some number of spinor derivatives D_a^+, D_a^- which act on the Grassmann delta-functions $\delta^8(\theta_1-\theta_2)$ and can kill them. Non-zero result will be only if all these δ -functions are killed.
- Only these terms are taking into account which have the pole $\frac{1}{\varepsilon}$ after integration over proper-time.

One-loop divergences

Results of calculations

$$\Gamma_{div}^{(1)}[V^{++}, Q^{+}] = \frac{C_2 - T(R)}{3(4\pi)^3 \varepsilon} tr \int d\zeta^{(-4)} du (F^{++})^2 - \frac{2if^2}{(4\pi)^3 \varepsilon} \int d\zeta^{(-4)} du \widetilde{Q}^{+m} (C_2 \delta_m^{\ n} - C(R)_m^{\ n}) F^{++} Q^{+}_{\ n}.$$

• The quantities $C_2, T(R), C(R)$ are defined as follows

$$tr(T^A T^B) = T(R)\delta^{AB}$$

$$tr(T^A_{Adj} T^B_{Adj}) = f^{ACD} f^{BCD} = C_2 \delta^{AB}$$

$$(T^A T^A)_m{}^n = C(R)_m{}^n.$$

• In $\mathcal{N}=(1,1)$ SYM theory, the hypermultiplet is in the same representation as the vector multiplet. Then $C_2=T(R)=C(R)$. Then $\Gamma^{(1)}_{div}[V^{++},Q^+]=0!$

Two-loop divergences

Procedure of calculations: gauge multiplet sector

- Two-loop divergences are calculated within background field method and proper-time technique like in one-loop case.
- We begin with only gauge multiplet background.
- Power counting shows that the only possible two-loop divergent contribution in the gauge superfield sector has the following structure

$$\Gamma_{\text{div}}^{(2)}[V^{++}] = a \int d\zeta^{(-4)} du \, \text{tr} \left(F^{++} \widehat{\Box} F^{++}\right)$$

with some constant a, which diverges after removing a regularization.

- Within background field method, the two-loop contributions to superfield
 effective action are given by two-loop vacuum harmonic supergraphs with
 background field dependent lines.
- The background field dependent propagators (lines) are represented by proper-time integrals.
- Constant a in principle should have the following structure $a = \frac{d_1}{\varepsilon} + \frac{d_2}{\varepsilon^2}$ with arbitrary real parameters $d_1 d_2$.

Two-loop supergraphs



Figure: Two-loop Feynman supergraphs with gauge self-interactions vertices.

Figure: Two-loop Feynman supergraphs with hypermultiplet and ghosts vertices.

Two-loop divergences

Procedure of calculations

- One can prove that the in the case under consideration the only two-loop divergent contribution comes from the '∞' supergraph.
- Contribution of this supergraph contains the product of two Green functions $G^{(2,2)}(z_1,u_1;z_2,u_2)$ at $z_1=z_2$.
- Divergent part of such Green function can be calculated and has the form $\sim \frac{1}{\varepsilon}F^{++}$. Therefore $G^{(2,2)}(z_1,u_1;z_2,u_2)|_{z_1=z_2}\sim \frac{1}{\varepsilon}F^{++}+g^{++}$ where g^{++} is some finite functional.
- ullet It means that full two loop contribution of the ' ∞ ' supergraph looks like

$$b \int d\zeta^{(-4)} du \left(\frac{1}{\varepsilon} F^{++} + g^{++}\right) \widehat{\Box} \left(\frac{1}{\varepsilon} F^{++} + g^{++}\right).$$

with some constant b. Therefore there are two types of contributions, one containing $\frac{1}{\varepsilon}$ and another one containing $\frac{1}{\varepsilon^2}$.

- The terms with simple pole $\frac{1}{6}$ has the form $\sim \frac{1}{6}F^{++}$ $\widehat{\Box}$ g^{++} .
- However, the power counting tells us that the two loop divergence has the form $\sim F^{++}$ $\widehat{\Box}$ F^{++} . Therefore, we must assume that $g^{++}=0$ or $g^{++}\sim F^{++}$.

Two-loop divergences

Results of calculations in gauge multiplet sector

- Further we consider only the case $g^{++} = 0$.
- In this case, the divergent part of two-loop effective action has the form

$$\Gamma_{div}^{(2)} = \frac{8f^2}{(4\pi)^6 \varepsilon^2} (C_2)^2 \mathrm{tr} \int d\zeta^{(-4)} \, du \, F^{++} \, \widehat{\Box} \, F^{++},$$

where $F^{++}=0$ is the classical equation of motion in the case when the hypermultiplet is absent.

ullet Coefficient c_2 looks like

$$c_2 = \frac{8f^2}{(4\pi)^6 \varepsilon^2} (C_2)^2.$$

Field redefinition and cancelation of divergences

- Consider the off-shell transformation of the superfield V^{++} in the classical action $V^{++} \to V^{++} a$ $\widehat{\Box}$ F^{++} .
- The corresponding transformation of the classical action is $\delta S = -a \int d\zeta^{(-4)} \, du \, {\rm tr} \, F^{++} \, \widehat{\Box} \, F^{++}. \ \, {\rm That \ allows \ to \ cancel \ completely}$ off-shell the two-loop divergence of the effective action in the gauge multiplet sector.
- Thus, one can state that the theory under consideration is off-shell finite at one- and two-loops (at least in gauge multiplet sector).

Two-loop divergences

Hypermultiplet dependence of the two-loop divergences: indirect analysis.

- The hypermultiplet-dependent contribution to two-loop divergences can be obtained by the straightforward quantum computations of the two-loop effective action taking into account the hypermultiplet background.
- ullet The general form of hypermultiplet dependent divergences can in principle be found without direct calculations, assuming the invariance of the effective action under the hidden $\mathcal{N}=(0,1)$ supersymmetry.
- The result has an extremely simple form

$$\Gamma_{\text{div}}^{(2)}[V^{++}, q^{+}] = a \int d\zeta^{(-4)} du \operatorname{tr} E^{++} \widehat{\Box} E^{++},$$

where $E^{++} = F^{++} + \frac{i}{2}[q^{+A}, q_A^+]$ is the left hand side of classical equation of motion for vector multiplet superfield coupled to hypermultiplet.

• Two-loop divergences vanish on-shell as expected.

Two-loop divergences

Hypermultiplet dependence of the two-loop divergences: direct calculations:

$$\Gamma_{\text{div}}^{(2)}[V^{++}, q^{+}] = \frac{f^{2}(C_{2})^{2}}{8(2\pi)^{6}\epsilon^{2}} \int d\zeta^{(-4)} du \operatorname{tr} E^{++} \widehat{\Box} E^{++}$$

+terms proportional to e.o.m for hypermultiplet.

Summary

- The six-dimensional $\mathcal{N}=(1,0)$ supersymmetric theory of the non-Abelian vector multiplet coupled to hypermultiplet in the 6D, $\mathcal{N}=(1,0)$ harmonic superspace was considered.
- Background field method in harmonic superspace was constructed .
- Manifestly supersymmetric and gauge invariant effective action, depending both on vector multiplet and hypermultiplet superfields, was formulated.
- Superficial degree of divergence is evaluated and structure of one- and two-loop counterterms was studied.
- An efficient manifestly gauge invariant and $\mathcal{N}=(1,0)$ supersymmetric technique to calculate the one- and two-loop contributions to effective action was developed. As an application of this technique, we found the one- and two-loop divergences of the theory under consideration.
- \bullet The same one-loop divergences have been calculated independently with help of $\mathcal{N}=(1,0)$ supergraphs.
- It is proved that $\mathcal{N}=(1,1)$ SYM theory is one-loop off-shell finite. There is no need to use the equations of motion to prove this property.

Summary

- Two-loop divergences of the $6D, \mathcal{N} = (1,1)$ SYM theory were calculated in gauge multiplet sector. The hypermultiplet dependence of two-loop divergences was restore on the base of hidden $\mathcal{N} = (0,1)$ supersymmetry.
- The hypermultiplet dependence of two-loop divergences was explicitly calculated.

Some open problems

- Calculations of the two-loop $\frac{1}{\epsilon}$ divergences.
- Study of the three-loop divergences.

THANK YOU VERY MUCH!