

Исследование эффекта старения катодно-стриповых камер детектора CSC на установке GIF++ (ЦЕРН).

В. Перелыгин, В. Пальчик

(ОИЯИ, Дубна)

Научная сессия секции ядерной физики ОФН РАН 1-5 апр. 2024 г., г. Дубна, ОИЯИ

- 1. Мюонная система детектора CMS.
- 2. КСК как часть торцевой мюонной системы CMS.
- 3. Модернизация LHC в HL-LHC и тесты на радиационное старение газовых детекторов.
- 4. Исследование эффекта старения КСК детектора СSC на установке GIF++.
- 5. Заключение.

СМЅ на БАК

CMS состоит из 11 частей:

- пять «колец» центральной части, включающих в себя сам соленоид (В=4Тл), внутренний трекер, электромагнитный и адронный калориметры, а также моюнную систему центральной части

- шесть «дисков» торцевой части (по три с каждой стороны от центральной части), содержащих моюнную систему торцевой части и торцевые электромагнитный и адронный калориметры.

Две секции калориметра малых углов расположены за торцевыми частями детектора.

КСК в мюонной системе CMS

The 6-layer Cathode Strip Chambers are the part of the CMS Endcap muon system. There are 540 CSCs of different types and sizes composing 4 ME stations (green) dividing in turn into 9 "rings" in each Endcap. The system covers $0.9 < |\eta| < 2.4$. The sensitive area: 6,300 m², number of r/o channels: 477K

Muon system provides:

- Muon identification and momentum measurement
- Muon trigger
- Rejection of background by matching of muon tracks with the inner Tracker
- $H \rightarrow ZZ^* \rightarrow 4\mu$ ("golden mode")

G.L. Bayatian et al. [CMS collaboration] "The Muon Project", Technical Design Report, CERN/LHCC 97-32, CMS TDR 3, 15 December 1997.

S. Chatrchyan et al. [CMS Collaboration], "The CMS experiment at the CERN LHC", JINST 3 (2008) S08004.

Мюонная система торцевой части CMS в сеансах набора данных в p-p столкновениях

CSC reconstructed hit positions from one run of a muon-triggered dataset

- High Spatial resolution 45÷ 150 µm
- Timing resolution ~ 3 ns

S. Chatrchyan et al., The performance of the CMS muon detector in proton-proton collisions at vs = 7 TeV at the LHC, CMS-MUO-11-001, CERN-PH-EP-2013-072, JINST 8 (2013) P11002. DOI: 10.1088/1748-0221/8/11/P11002.

S. Chatrchyan et al., Performance of the CMS muon detector and muon reconstruction with proton-proton collisions at vs = 13 TeV, JINST 13 (2018) P06015.

The luminosity increase with LHC upgrade to HL-LHC will cause a significant rise of the particle background rate.

Therefore, the study of possible aging effects of detector materials and gases is of great importance.

- Investigate of the possibility to operate with reduced CF₄ amount
 Search for a CF₄ eco-friendly replacement
- (HFO1234ze, $C_3H_2F_4$, GWP < 1 for 100 year)

I. Авторами статьи *T. Ferguson et al. Aging studies of CMS muon chamber prototypes. NIMA 488 (2002) pp. 240–257* проводились тесты с изучением эффекта старения для газовых смесей 30%Ar+50%CO₂+20%CF₄, 30%Ar+70%CO₂ и 40%Ar+50%CO₂+10%CF₄ при облучении источником ⁹⁰Sr прототипов KCK.

В прототипах в качестве уплотнения использовался силиконвый герметик RTV, который проникал в газовый объем камеры. Газовое усиление в смеси без CF₄ упало в 2 раза после дозы в 0.25 Кл/см. Наблюдались Si отложения на проволоках.

Для CF₄ – содержащих смесей данный эффект был незначителен вплоть до 13 Кл/ст

30%Ar+70%CO₂ gas mixture: Si deposits on the anode wire in the irradiated zone

Использование Si герметиков внутри газвового объема каиер недопустимо. Наличие в газовой смеси CF₄ предотвращает образование отложений Si на проволоках: $4F \cdot +Si = SiF_4 \uparrow$

II. В 2000-2001 годах **две полномасштабных КСК** были протестированы на установке гаммаоблучения (GIF) с использованием источника гамма-излучения ¹³⁷Cs активностью 740 ГБк . *Acosta D. et al. Aging Tests of Full-Scale CMS Muon Cathode Strip Cham-bers. Nucl. Instr. Meth. A. 2003. V. 515. pp. 226–233.*

Использовалась газовая смесь 40%Ar+50%CO₂+10%CF₄. Одна камера работала с открытой газовой системой, а другая - с прототипом газовой стстемы КСК CMS, работающей в режиме «замкнутой петли» имеющей ввод свежей смеси в количестве 5% от величины потока газа.

Накопленные заряды составили 0,3 и 0,4 Кл/см. Эффектов старения не наблюдалось.

Тесты на старение с различными прототипами КСК CMS-3

III. E. Barberis et al. Longevity studies of CSC prototypes operating with Ar+CO2 gas mixture and different fractions of CF4 Eur. Phys. J. Plus 139, 166, (2024).

Исследовался эффект старения на прототипах КСК малого размера при облучении лабораторным источником ⁹⁰Sr с использованием различных газовых смесей на осноые Ar+CO2, с включением 5%, 2% и 0% добавок CF₄.

Small 30x30cm² 2- layer CSC

В тестах с содержанием в смеси 2% и 0% CF4 наблюдался темный, видимый глазом осадок на проволоках в зоне облучения при накопленном заряде 300 мКл/см. Спектрометрический анализ подтвердил наличие углерода на проволоках. При этом ухудшения характеристик камер (темновой ток, газовое усиление) не наблюдалось.

Газовые смеси, содержащие менее или равные 2% CF₄, потенциально опасны для долгосрочной работы CSC из-за осаждения **углерода** на анодных проводах. LHCb Muon Gas System: MWPC работают с 40% Ar + 55% CO₂ + 5% CF₄ газ. смесью.

Установка GIF++ B. 887 (CERN), 3D view

- The Gamma Irradiation Facility (GIF++) was designed and built at the CERN SPS North Area (EHN1) in 2015.
- With this facility, the detectors could simultaneously be exposed to the photons from a ¹³⁷Cs source and to a high-energy H4 SPS muon beam.

- A set of filters: Attenuation Factor: (1 ÷ 46000)
- Upstream + Downstream ± 37° irradiation cone

M.R. Jäkel et al. CERN GIF++ : A new irradiation facility to test large-area particle detectors for the high-luminosity LHC program. PoS (TIPP2014) 102. D. Pfeiffer et al. "The radiation field in the Gamma Irradiation Facility GIF++ at CERN", Nucl. Instr. Meth. A 866 (2017) 91–103

2.15

4.64

1.47

100

10

100

Pos. 2

Pos. 3

КСК в позиции облучения на GIF++ и токи в субкамерах

- ME2/1 and ME1/1 CSCs are chosen for the test because in CMS they took positions with the highest background. In the irradiation position at GIF++ ME2/1 is in front of ME1/1 and ~1.8m from the ¹³⁷Cs source.
- During the irradiation high voltage has been applied to 4 layers while 2 others were off (reference layers).
- Each layer of ME2/1 active area is divided by 3 independent high voltage zones HV segments.
- The current of ME1/1 irradiated layers is ~ 190 μ A, while for ME2/1 segment1 it is ~ 390 μ A.

The CSC operation conditions at GIF++ are like those in the CMS: closed loop gas supply with nominal gas flow and 10% fresh gas injection, sensors for O_2 and H_2O control, same services and DAQ.

Периоды облучения КСК на GIF++

CSC	HL-LHC	Accumulated charge Q (mC/cm)					
	(3000 fb ⁻ 1)	before 2018	Nov2021	Oct2022	May-2023	19.07.23	25.08.23
ME1/1	200 mC/cm	330 (10% CF ₄)	700 (2% CF ₄)	725 (5% CF ₄)	770	790	800
ME2/1, S1	130 mC/cm	340 (10% CF ₄)		460 (5% CF ₄)	575	625	670
ME2/1, S2, S3		300 (10% CF ₄)		400 (5% CF ₄)	510	550	600
<me2 1=""></me2>		310 (10% CF ₄)		420 (5% CF ₄)	530	570	610

- ME1/1 plots showing accumulated charge per 1cm of anode wire length during CSC irradiation at GIF++ (¹³⁷Cs) with different gas components of Ar+CO₂+CF₄ gas mixture: (40/50/10 period I, 40/58/2 period II and 40/55/5 period III).
- ME1/1 and ME2/1 table of the accumulated charge.

(*) Accumulated charge estimated at end of HL-LHC running assuming Run 2 currents and background occupancies, corrected using FLUKA simulation including HGCAL. To be updated with Run 3 currents.

Величины относительных токов в субкамерах в зависимосит от накопленного заряда на единицу длины анодной проволочки (смесь с 5% CF₄)

ME1/1 (left) and ME2/1 (right) plots of the **relative currents** in irradiated layers vs accumulated charge.

- Plots for the period of irradiation with 40%Ar+55%CO₂+5%CF₄ gas mixture.
- Values are normalized to the averaged current of the two reference layers (HV=0 during irradiation).
- No ageing effects observed and same for dark current

КСК при проведении тестов в мюонном пучке

Measurements with the muon test beam:

1. Scintillator trigger, 15x15cm²

acceptance

a). Spatial resolution vs

Source intensity

2. Large statistics CSC in self-

trigger mode, Source off

ME2/1 and ME1/1 in TB position-2023 Irradiation position differs from the Test Beam one.

Пространственное разрешение КСК в мюонном пучке с различными комбинациями фильтров ¹³⁷Сs

- Spatial resolution of ME1/1 (left) and ME2/1 (right) vs mean CSC layer current with 5%CF₄ gas mixture.
- The measurements are performed with a muon beam and varying ¹³⁷Cs source intensity.
- The results are corrected for atmospheric pressure variation.
- The spatial resolution degrades linearly with the layer current increase.
- The HL-LHC background condition for L=5*10³⁴Hz/cm² corresponds to ME1/1 layer current of 20 μ A, while for ME2/1s1 15 μ A.

накопленного заряда.

Spatial resolution of the ME1/1 (left) and ME2/1 (right) chambers measured with a muon beam as a function of the accumulated charge.

- The first 330 mC/cm of charge (period I) was accumulated with the nominal 40%Ar+50%CO₂+10%CF₄ gas mixture, then irradiation was continued for ME1/1 only with the reduced CF₄ content (40%Ar+58%CO₂+2%CF₄ – period II) and finally the irradiation continued with intermediate CF₄ for both the CSCs (40%Ar+55%CO₂+5%CF₄ mixture – period III).

- Blue points represent measurements with 10% CF_4 gas mixture while the red points represent the measurements with 5% CF_4 gas mixture.

- No significant degradation of the spatial resolution was observed for the whole irradiation period up to the charge of 700 mC/cm for ME1/1 and 670 mC/cm for ME2/1.

- Systematic errors not included. Work on the evaluation of the systematic uncertainties ongoing.

- The slight degradation of the ME1/1 resolution in period III (2023) while we don't see any significant variation in the gas gain is to be understood.

Заключение

Исследования эффектов старения проводятся на прототипах КСК СМЅ малого размера и на полномасштабных камерах как с лабораторными источниками, так и на установках с промышленными ИИИ (GIF++). Изучается возможность минимизации использования парниковых газов в координатных детесторах или замены их на газы с малым ПГП.

Исследования эффектов старения в КСК CMS ME1/1 и ME2/1, проводимые на установке GIF++ (ЦЕРН) с 2016 года, не выявили признаков старения камер.

• Использались три рабочих газовых смеси с различным содержанием CF₄:

40%Ar+50%CO₂+10%CF₄, 40%Ar+58%CO₂+2%CF₄ and 40%Ar+55%CO₂+5%CF₄;

- Заряд на единицу длины анодной проволоки составил для ME1/1 800 мКл/сm, для ME2/1 670 мКл/cm;
- Относительный ток в субкамерах и скорость счета фоновых событий были стабильны в зависимости от накопленного заряда.
- Не наблюдается деградации пространственного разрешения КСК вплоть до величины накопленного заряда 700 мКл/ст для МЕ1/1 и 670 мКл/ст для МЕ2/1, в то время как выше 700 мКл/ст для МЕ1/1 ухудшение пространственного разрешения наблюдается (~ 8%);
- С ростом фоновой загрузки деградация пространственное разрешения КСК носит линейный характер и при работе HL-LHC в условиях максимальной светимости для станций ME1/1 и ME2/1 можно ожидать ухудшение величины пространственного разрешения на ~ 40%.

Спасибо за внимание !

Backup

КСК – темновой ток

Measurements of the CSC dark rates with single layer mode trigger as a function of the accumulated charge.

- The wires dark rates and the wires and strips signals coincidence rates are shown.
- The ME1/1 dark rate (left) is measured during irradiation with the 40%Ar+58%CO₂+2%CF₄ gas mixture up to 700 mC/cm (period II) then the gas mixture was changed to 40%Ar+55%CO₂+5%CF₄ (period III). First 330 mC/cm (period I not shown in this plot) were accumulated with the nominal 40%Ar+50%CO₂+10%CF₄ gas mixture.
- For ME1/1 the corrected wires rate excludes the contribution from a noisy wire group (left picture, brown squares).
- The ME2/1 dark rate (right) is measured during irradiation with the 40%Ar+50%CO₂+10%CF₄ gas mixture up to 330 mC/cm (period I) then the gas mixture was changed to 40% Ar+55%CO₂+5%CF₄ (period III).

-The dark rate of few kHz includes the cosmic rate and is negligible because the CSC trigger requirement is Wires*Strips coincidence in 4 layers in the time window of 175ns.

No ageing effects observed.

GIF++: ME2/1 event display with Source-off and on

В.Перелыгин_Сессия секции ЯФ ОФН РАН 02.04.2024

To study properties of a gas mixture with reduced CF4 content, the performance of CSC operated with 40%/50%/10% and 40%/58%/2% Ar/CO2/CF4 gas mixtures was compared.

ME1/1 spatial resolution obtained with a muon beam and uniform ¹³⁷Cs source background as a function of the background intensity in units of average ME1/1 current. The measurements are performed with 40%/50%/10% and 40%/58%/2% Ar/CO2/CF4 gas mixtures. The HL-LHC background condition for L=5*10³⁴Hz/cm² corresponds to the average currents of 20 uA. The results are corrected for atmospheric pressure variation.

25

