Muon Reconstraction at the CMS Experiment

A. Lanyov, <u>V. Shalaev</u>,S. Shmatov and N. Voytishin,

Dubna, 2 April 2024

The Conference of Nuclear Physics Section of the Physical Sciences Department of the Russian Academy of Sciences

Tracking at CMS: Tasks and Challenges

Tracking at CMS : Tasks and Challenges

<u>Conditions</u>: L_{inst} ~2 × 10³⁴ cm⁻²s⁻¹
Bunch crossing (BX) every 25 ns
up to 80 pp-collisions per BX
~ 30 charged particles per pp-collision

up to 2400 charged particles per BX or 10¹¹ per second

Tracking at CMS : Tasks and Challenges

<u>Conditions</u>: L_{inst} ~2 × 10³⁴ cm⁻²s⁻¹
Bunch crossing (BX) every 25 ns
up to 80 pp-collisions per BX
~ 30 charged particles per pp-collision

up to 2400 charged particles per BX or 10¹¹ per second

Tracking at CMS : Tasks and Challenges

<u>Conditions</u>: L_{inst} ~2 × 10³⁴ cm⁻²s⁻¹
Bunch crossing (BX) every 25 ns
up to 80 pp-collisions per BX
~ 30 charged particles per pp-collision

up to 2400 charged particles per BX or 10¹¹ per second

<u>Requirements</u>: fast and accurate

- High efficiency
- Low fake rate
- Precise track parameters
- Quickly!

Common steps of reconstruction:

- Clustering and Seeding using combination of hits to provide track candidate
- Track building adding compatible hits to predicted trajectory. Updating parameters
- 3. Final fit adding vertex, taking into account detector defects, smoothing trajectory, final estimation of parameters and uncertainties

Common steps of reconstruction:

- Clustering and Seeding using combination of hits to provide track candidate
- Track building adding compatible hits to predicted trajectory. Updating parameters
- 3. Final fit adding vertex, taking into account detector defects, smoothing trajectory, final estimation of parameters and uncertainties

Muon reconstruction algorithms:

Tracker– silicon tracker only

Common steps of reconstruction:

- Clustering and Seeding using combination of hits to provide track candidate
- Track building adding compatible hits to predicted trajectory. Updating parameters
- 3. Final fit adding vertex, taking into account detector defects, smoothing trajectory, final estimation of parameters and uncertainties

Muon reconstruction algorithms:

• **Tracker**– silicon tracker only

8

Common steps of reconstruction:

- Clustering and Seeding using combination of hits to provide track candidate
- Track building adding compatible hits to predicted trajectory. Updating parameters
- 3. Final fit adding vertex, taking into account detector defects, smoothing trajectory, final estimation of parameters and uncertainties

- Tracker silicon tracker only
- **Standalone** muon chambers only

Common steps of reconstruction:

- Clustering and Seeding using combination of hits to provide track candidate
- Track building adding compatible hits to predicted trajectory. Updating parameters
- 3. Final fit adding vertex, taking into account detector defects, smoothing trajectory, final estimation of parameters and uncertainties

- Tracker silicon tracker only
- **Standalone** muon chambers only

Common steps of reconstruction:

- Clustering and Seeding using combination of hits to provide track candidate
- 2. Track building adding compatible hits to predicted trajectory. Updating parameters
- 3. Final fit adding vertex, taking into account detector defects, smoothing trajectory, final estimation of parameters and uncertainties

- Tracker silicon tracker only
- **Standalone** muon chambers only
- Global- muon chambers and silicon tracker

Common steps of reconstruction:

- Clustering and Seeding using combination of hits to provide track candidate
- Track building adding compatible hits to predicted trajectory. Updating parameters
- 3. Final fit adding vertex, taking into account detector defects, smoothing trajectory, final estimation of parameters and uncertainties

- Tracker silicon tracker only
- **Standalone** muon chambers only
- Global- muon chambers and silicon tracker

Common steps of reconstruction:

- Clustering and Seeding using combination of hits to provide track candidate
- 2. Track building adding compatible hits to predicted trajectory. Updating parameters
- 3. Final fit adding vertex, taking into account detector defects, smoothing trajectory, final estimation of parameters and uncertainties

- Tracker silicon tracker only
- **Standalone** muon chambers only
- **Global** muon chambers and silicon tracker Muon reconstruction efficiency ~99%

Muon momentum resolution ~98% (p_T <200 GeV/c)

 μ

 μ^+

See "New Physics" reports : Y. Korsakov $g \times 2$ (become two jets) K. Slizhevskiy S. Shmatov

d (becomes a jet)

 γ^*/Z

00

g 00

Muons from QCD dominate.

See "New Physics" reports : We need to distinguish signal muons. How? Y. Korsakov K. Slizhevskiy S. Shmatov μ^{-}

 γ^*/Z

Thecom

- Muons from QCD dominate. See "New Physics" reports : We need to distinguish signal muons. How? Y. Korsakov K. Slizhevskiy S. Shmatov γ^*/Z becom Isolated Non-Isolated $\Delta R = \sqrt{\Delta \varphi^2 + \Delta \eta^2} < 0.4$
- Tracker isolation only silicon tracker is used
- Combined isolation silicon tracker and calorimeters are used
- Particle flow isolation all subdetectors are used

 $\frac{\sum p_T^{\Delta R} - p_T^{\mu}}{\sum n^{\Delta R}} < 0.15$

- Tracker isolation only silicon tracker is used
- **Combined isolation** silicon tracker and calorimeters are used
- Particle flow isolation all subdetectors are used

 $-p_T^{\mu} < 0.15$

Conditions: $L_{inst} \sim 10^{34} \ cm^{-2} s^{-1}$

- 40 MHz
- ~400 Tb per second

Extremely overloaded!

Conditions: $L_{inst} \sim 2 \times 10^{34} \ cm^{-2} s^{-1}$

- 40 MHz
- ~400 Tb per second

Extremely overloaded!

Requirements: few but interesting & quality

- High efficiency
- High purity
- Computing economy

Conditions: $L_{inst} \sim 2 \times 10^{34} \ cm^{-2} s^{-1}$

- 40 MHz
- ~400 Tb per second

Extremely overloaded!

Level 1 Trigger (L1) Hardware

Global trigger– make decision, form data stream

40 MHz

400 Tb/s

Regional trigger – rank objects in one detector subsystem

Local trigger – collect signals from muon stations Requirements: few but interesting & quality

- High efficiency
- High purity
- **Computing economy**

High Level Trigger (HLT) Software Make a decision Fitting 30 kHz Apply Isolation criteria Vertex snap Use information from

silicon tracker

100 Hz

100 Mb/s

Conditions: $L_{inst} \sim 2 \times 10^{34} \ cm^{-2} s^{-1}$

- 40 MHz
- ~400 Tb per second

Extremely overloaded!

Requirements: few but interesting & quality

- High efficiency
- High purity
- Computing economy

Muon Identification

Electroweak precision measurements requires high quality muon tracks. Special Identification algorithms are used

Tight Muon

The candidate is reconstructed as a Global Muon	
<pre>x²/ndof of the global-muon track fit < 10 At least one muon chamber hit included in the global-muon track fit</pre>	To suppress hadronic punch- through and muons from decays in flight
Muon segments in at least two muon stations	To suppress accidental track-to- segment matches
Its tracker track has transverse impact parameter d _{xy} < 2 mm w.r.t. the primary vertex, d _z < 5 mm	To suppress cosmic muons and further suppress muons from decays in flight and tracks from pileup
Number of pixel hits > 0. number of tracker layers with hits >5	To guarantee a good p _T measurement, for which some minimal number of measurement points in the tracker is needed

Muon Identification

Identification officiency > 0-0/1

Electroweak precision measurements requires high quality muon tracks. Special Identification algorithms are used

Tight Muon

0		-	
The candidate is reconstructed as a Global Muon		>	36.4 fb ⁻¹ (13 TeV, 2016)
χ²/ndof of the global-muon track fit < 10 At least one muon chamber hit included in the global-muon track fit	To suppress hadronic punch- through and muons from decays in flight	Efficienc	1.05 CMS Tight Id, $p_{\pm} \ge 20 \text{ GeV}$ Preliminary - Data 0.95 - 0.95
Muon segments in at least two muon stations	To suppress accidental track-to- segment matches	/	0.9
Its tracker track has transverse impact parameter $d_{xy} < 2 \text{ mm w.r.t.}$ the primary vertex, $d_z < 5 \text{ mm}$	To suppress cosmic muons and further suppress muons from decays in flight and tracks from pileup	a/MC	0.8 1.02 1
Number of pixel hits > o. number of tracker layers with hits >5	To guarantee a good p _T measurement, for which some minimal number of measurement points in the tracker is needed	Dat	0.98 0.96 0.94 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 muon η 23

Conclusions

Existing methods of muon tracks registration, its parameters measurement and background suppression demonstrate high efficiency and accuracy, and allow us to successfully perform precision measurements with muons

Conclusions

Existing methods of muon tracks registration, its parameters measurement and background suppression demonstrate high efficiency and accuracy, and allow us to successfully perform precision measurements with muons

Backup

High p_T Muon Event

 p_T =100 GeV/c

 p_T =1000 GeV/c

Muon p_T Resolution

Muon Energy Loss

A. Lanyov Study of High- p_T Muon Simulation and Reconstruction in CMS 04.12.2003

6

29

CMS

