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Tracking at CMS : Tasks and Challenges
Conditions: 𝐿𝑖𝑛𝑠𝑡 ~2 × 1034 𝑐𝑚−2𝑠−1

• Bunch crossing (BX) every 25 ns 
• up to 80 pp-collisions per BX
• ~ 30 charged particles per pp-collision

up to 2400 charged particles per 
BX or 𝟏𝟎𝟏𝟏 per second
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https://twiki.cern.ch/twiki/bin/view/CMSPublic/LumiPublicResults
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Tracking at CMS : Tasks and Challenges

Requirements: fast and accurate 
• High efficiency 
• Low fake rate
• Precise track parameters
• Quickly!
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Common steps of reconstruction:
1. Clustering and Seeding – using combination

of hits to provide track candidate
2. Track building – adding compatible hits to

predicted trajectory. Updating parameters
3. Final fit – adding vertex, taking into account

detector defects, smoothing trajectory, final
estimation of parameters and uncertainties
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Tracks Reconstruction. Muon Case
Common steps of reconstruction:
1. Clustering and Seeding – using combination

of hits to provide track candidate
2. Track building – adding compatible hits to

predicted trajectory. Updating parameters
3. Final fit – adding vertex, taking into account

detector defects, smoothing trajectory, final
estimation of parameters and uncertainties

Muon reconstruction efficiency ~99%

JINST 15 (2020) P02027
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Muon momentum resolution ~98% (𝑝𝑇<200 GeV/c)

Muon reconstruction algorithms:
• Tracker– silicon tracker only
• Standalone – muon chambers only
• Global– muon chambers and silicon tracker

JINST 15 (2020) P02027



How to Find the Right Muon. Isolation

See “New Physics” reports :
Y. Korsakov
K. Slizhevskiy
S. Shmatov
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Muons from QCD dominate.
We need to distinguish signal muons. How? See “New Physics” reports :

Y. Korsakov
K. Slizhevskiy
S. Shmatov
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∆𝑅 = ∆𝜑2 + ∆𝜂2< 0.4

σ 𝑝𝑇
∆𝑅−𝑝𝑇

𝜇

σ 𝑝𝑇
∆𝑅 <0.15

• Tracker isolation – only silicon tracker is used
• Combined isolation – silicon tracker and 

calorimeters are used
• Particle flow isolation – all subdetectors are used 
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How to Find the Right Muon. Isolation
Muons from QCD dominate.
We need to distinguish signal muons. How? 

∆𝑅 = ∆𝜑2 + ∆𝜂2< 0.4

σ 𝑝𝑇
∆𝑅−𝑝𝑇

𝜇

σ 𝑝𝑇
∆𝑅 <0.15

• Tracker isolation – only silicon tracker is used
• Combined isolation – silicon tracker and 

calorimeters are used
• Particle flow isolation – all subdetectors are used 

PoS LHCP2018 (2018) 068

Iso Efficiency ~87-99%
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See “New Physics” reports :
Y. Korsakov
K. Slizhevskiy
S. Shmatov



Triggering

Conditions: 𝐿𝑖𝑛𝑠𝑡 ~10
34 𝑐𝑚−2𝑠−1

• 40 MHz
• ~400 Tb per second 

Extremely overloaded!
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Level 1 Trigger (L1)

Regional trigger – rank 
objects in one detector 

subsystem

Local trigger – collect 
signals from muon stations

Global trigger– make  
decision, form data stream

High Level Trigger (HLT)

40 MHz
30 kHz

Make a decision

Fitting

Apply Isolation criteria

Vertex snap

Use information from 
silicon tracker

100 Hz

100 Mb/s400 Tb/s 
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Hardware Software
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• 40 MHz
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• Computing economy

Trigger Efficiency ~93-98%

JINST 15 (2020) P02027
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Level 1 Trigger (L1)

Regional trigger – rank 
objects in one detector 

subsystem

Local trigger – collect 
signals from muon stations

Global trigger– make  
decision, form data stream

High Level Trigger (HLT)

40 MHz
30 kHz

Make a decision

Fitting

Apply Isolation criteria

Vertex snap

Use information from 
silicon tracker

100 Hz

100 Mb/s400 Tb/s 

Hardware Software



Muon Identification
Electroweak precision measurements requires high quality muon tracks.
Special Identification algorithms are used 

Tight Muon
The candidate is reconstructed as a 
Global Muon

χ2/ndof of the global-muon track fit 
< 10 To suppress hadronic punch-

through and muons from decays in 
flight

At least one muon chamber hit 
included in the global-muon track 
fit

Muon segments in at least two 
muon stations

To suppress accidental track-to-
segment matches

Its tracker track has transverse 
impact parameter dxy < 2 mm w.r.t. 
the primary vertex, dz < 5 mm

To suppress cosmic muons and 
further suppress muons from decays 
in flight and tracks from pileup

Number of pixel hits > 0.
number of tracker layers with hits >5

To guarantee a good 
pT measurement, for which some 
minimal number of measurement 
points in the tracker is needed 22
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Special Identification algorithms are used 

Tight Muon
The candidate is reconstructed as a 
Global Muon

χ2/ndof of the global-muon track fit 
< 10 To suppress hadronic punch-

through and muons from decays in 
flight

At least one muon chamber hit 
included in the global-muon track 
fit

Muon segments in at least two 
muon stations

To suppress accidental track-to-
segment matches

Its tracker track has transverse 
impact parameter dxy < 2 mm w.r.t. 
the primary vertex, dz < 5 mm

To suppress cosmic muons and 
further suppress muons from decays 
in flight and tracks from pileup

Number of pixel hits > 0.
number of tracker layers with hits >5

To guarantee a good 
pT measurement, for which some 
minimal number of measurement 
points in the tracker is needed

Identification efficiency >95%!

CMS-DP-2017/007
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Conclusions

JHEP 12 (2019) 059
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Existing methods of muon tracks
registration, its parameters measurement
and background suppression demonstrate
high efficiency and accuracy, and allow us
to successfully perform precision
measurements with muons



Conclusions
Existing methods of muon tracks
registration, its parameters measurement
and background suppression demonstrate
high efficiency and accuracy, and allow us
to successfully perform precision
measurements with muons

New technics and algorithms (mkFIT ,
DNN etc.) are coming (JINST 19 (2024) P02031).
New registration methods for exotic
experimental signatures are under the
process or already applied (JHEP 03 (2022) 16025)
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Backup
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High 𝑝𝑇 Muon Event
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𝑝𝑇=100 GeV/c 𝑝𝑇=1000 GeV/c



Muon 𝑝𝑇 Resolution
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Muon Energy Loss
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CMS
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