Equation of state of rotating QCD and
 Moment of inertia of quark-gluon plasma

V. Braguta
JINR
2 April, 2024

In collaboration with

- M. Chernodub
- I. Kudrov
- A. Roenko*
- D. Sychev

[^0]
Rotation of QGP in heavy ion collisions

- QGP is created with non-zero angular momentum in non-central collisions

Rotation of QGP in heavy ion collisions

Angular velocity from STAR (Nature 548, 62 (2017))

- $\Omega=\left(P_{\Lambda}+P_{\bar{\Lambda}}\right) \frac{k_{B} T}{\hbar}$ (Phys. Rev. C 95, 054902 (2017))
- $\Omega \sim 10 \mathrm{MeV}\left(v \sim c\right.$ at distances $\left.10-20 \mathrm{fm}, \sim 10^{22} s^{-1}\right)$
- Relativistic rotation of QGP

Rotation of QGP in heavy ion collisions

Hydrodynamic simulations (Phys.Rev.C 94, 044910 (2016))

- Au-Au: left $\sqrt{s}=200 \mathrm{GeV}$, right $b=7 \mathrm{fm}$,
- $\Omega \sim(4-28) \mathrm{MeV}$
- Relativistic rotation of QGP

Rotation of QGP in heavy ion collisions

Hydrodynamic simulations (Phys.Rev.C 94, 044910 (2016))

- Au-Au: left $\sqrt{s}=200 \mathrm{GeV}$, right $b=7 \mathrm{fm}$,
- $\Omega \sim(4-28) \mathrm{MeV}$
- Relativistic rotation of QGP

How relativistic rotation influences QCD?

Lattice QCD

Lattice simulation

- Allows to study strongly interacting systems
- Based on the first principles of quantum field theory
- Powerful due to modern supercomputers and algorithms

Lattice simulation of QCD

- We study QCD in thermodynamical equilibrium
- The system is in the finite volume
- Calculation of the partition function

$$
Z \sim \int D U e^{-S_{G}(U)} \prod_{i=u, d, s \ldots} \operatorname{det}\left(\hat{D}_{i}(U)+m_{i}\right)
$$

- Monte Carlo calculation of the integral
- Carry out continuum extrapolation $a \rightarrow 0$
- Uncertainties (discretization and finite volume effects) can be systematically reduced
- The first principles based approach. No assumptions!
- Parameters: g^{2} and masses of quarks

Modern lattice simulation of QCD

$$
Z_{l}=\int D U e^{-S_{G}(U)} \times \operatorname{det}(\hat{\mathbf{D}}(\mathbf{U})+\mathbf{m})=\int D U e^{-E_{e f f}(U)}
$$

- Lattices
- 96×48^{3}
- Variables: $96 \cdot 48^{3} \cdot 4 \cdot 8 \sim 300 \cdot 10^{6}$
- Matrices: $100 \cdot 10^{6} \times 100 \cdot 10^{6}$
- Dynamical u, d, s, c-quarks
- Physical masses of u, d, s, c-quarks
- Lattice spacing $a \sim 0.05 \mathrm{fm}$

Applications

- Spectroscopy
- Matrix elements and correlations functions
- Thermodynamic properties of QCD
- Transport properties of QCD
- Phase transitions
- Nuclear physics
- Properties of QCD under extreme conditions (magnetic field, baryon density, relativistic rotation,...)
- Topological properties
- ...

Study of rotating QGP

- Our aim: study rotating QCD within lattice simulations
- Rotating QCD at thermodynamic equilibrium
- At the equilibrium the system rotates with some Ω
- The study is conducted in the reference frame which rotates with QCD matter
- QCD in external gravitational field
- Boundary conditions are very important!

Details of the simulations

- Gluodynamics is studied at thermodynamic equilibrium in external gravitational field
- The metric tensor

$$
g_{\mu \nu}=\left(\begin{array}{cccc}
1-r^{2} \Omega^{2} & \Omega y & -\Omega x & 0 \\
\Omega y & -1 & 0 & 0 \\
-\Omega x & 0 & -1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right)
$$

- Geometry of the system: $N_{t} \times N_{z} \times N_{x} \times N_{y}=N_{t} \times N_{z} \times N_{s}^{2}$

Details of the simulations

- Partition function (\hat{H} is conserved)

$$
Z=\operatorname{Tr} \exp [-\beta \hat{H}]=\int D A \exp \left[-S_{G}\right]
$$

- Euclidean action

$$
\begin{gathered}
S_{G}=-\frac{1}{2 g_{Y M}^{2}} \int d^{4} x \sqrt{g_{E}} g_{E}^{\mu \nu} g_{E}^{\alpha \beta} F_{\mu \alpha}^{(a)} F_{\nu \beta(a)} \\
S_{G}=\frac{1}{2 g_{Y M}^{2}} \int d^{4} x \operatorname{Tr}\left[\left(1-r^{2} \Omega^{2}\right) F_{x y}^{a} F_{x y}^{a}+\left(1-y^{2} \Omega^{2}\right) F_{x z}^{a} F_{x z}^{a}+\right. \\
+\left(1-x^{2} \Omega^{2}\right) F_{y z}^{a} F_{y z}^{a}+F_{x \tau}^{a} F_{x \tau}^{a}+F_{y \tau}^{a} F_{y \tau}^{a}+F_{z \tau}^{a} F_{z \tau}^{a}- \\
\left.-2 i y \Omega\left(F_{x y}^{a} F_{y \tau}^{a}+F_{x z}^{a} F_{z \tau}^{a}\right)+2 i x \Omega\left(F_{y x}^{a} F_{x \tau}^{a}+F_{y z}^{a} F_{z \tau}^{a}\right)-2 x y \Omega^{2} F_{x z} F_{z y}\right]
\end{gathered}
$$

Details of the simulations

Boundary conditions

- Periodic b.c.:
- $U_{x, \mu}=U_{x+N_{i}, \mu}$
- Not appropriate for the field of velocities of rotating body
- Dirichlet b.c.:
- $\left.U_{x, \mu}\right|_{x \in \Gamma}=1,\left.\quad A_{\mu}\right|_{x \in \Gamma}=0$
- Violate Z_{3} symmetry
- Neumann b.c.:
- Outside the volume $U_{P}=1, \quad F_{\mu \nu}=0$
- The dependence on boundary conditions is the property of all approaches
- One can expect that boundary conditions influence our results considerably, but their influence is restricted due to the screening

Screening of boundary conditions

Details of the simulations

Sign problem

$$
\begin{aligned}
& S_{G}=\frac{1}{2 g_{Y M}^{2}} \int d^{4} x \operatorname{Tr}\left[\left(1-r^{2} \Omega^{2}\right) F_{x y}^{a} F_{x y}^{a}+\left(1-y^{2} \Omega^{2}\right) F_{x z}^{a} F_{x z}^{a}+\right. \\
& +\left(1-x^{2} \Omega^{2}\right) F_{y z}^{a} F_{y z}^{a}+F_{x \tau}^{a} F_{x \tau}^{a}+F_{y \tau}^{a} F_{y \tau}^{a}+F_{z \tau}^{a} F_{z \tau}^{a}- \\
& \left.-2 i y \Omega\left(F_{x y}^{a} F_{y \tau}^{a}+F_{x z}^{a} F_{z \tau}^{a}\right)+2 i x \Omega\left(F_{y x}^{a} F_{x \tau}^{a}+F_{y z}^{a} F_{z \tau}^{a}\right)-2 x y \Omega^{2} F_{x z} F_{z y}\right]
\end{aligned}
$$

- The Euclidean action has imaginary part (sign problem)
- Simulations are carried out at imaginary angular velocities $\Omega \rightarrow i \Omega_{I}$
- The results are analytically continued to real angular velocities
- This approach works up to sufficiently large Ω

EoS of rotating gluodynamics

- Free energy of rotating QGP

$$
F(T, R, \Omega)=F_{0}(T, R)+C_{2} \Omega^{2}+\ldots
$$

- The moment of inertia

$$
C_{2}=-\frac{1}{2} I_{0}(T, R), \quad I_{0}(T, \Omega)=-\frac{1}{\Omega}\left(\frac{\partial F}{\partial \Omega}\right)_{T, \Omega \rightarrow 0}
$$

- Instead of $I_{0}(T, R)$ we calculate $K_{2}=-\frac{I_{0}(T, R)}{F_{0}(T, R) R^{2}}$
- Sign of K_{2} concides with the sign of $I_{0}(T, R)$

EoS of rotating gluodynamics

- Classical moment of inertia

$$
I_{0}(R)=\int_{V} d^{3} x x_{\perp}^{2} \rho_{0}\left(x_{\perp}\right)
$$

- Related to the trace of EMT $T_{\mu}^{\mu}=\rho_{0}\left(x_{\perp}\right) c^{2}$
- Generation of mass scale in QCD and scale anomaly

$$
T_{\mu}^{\mu} \sim\left\langle G^{2}\right\rangle \sim\left\langle H^{2}+E^{2}\right\rangle
$$

- In QCD the gluon condensate $\left\langle G^{2}\right\rangle \neq 0$
- One could anticipate: $\rho_{0} \sim\left\langle H^{2}+E^{2}\right\rangle$?

EoS of rotating gluodynamics

- Classical moment of inertia

$$
I_{0}(R)=\int_{V} d^{3} x x_{\perp}^{2} \rho_{0}\left(x_{\perp}\right)
$$

- Related to the trace of EMT $T_{\mu}^{\mu}=\rho_{0}\left(x_{\perp}\right) c^{2}$
- Generation of mass scale in QCD and scale anomaly

$$
T_{\mu}^{\mu} \sim\left\langle G^{2}\right\rangle \sim\left\langle H^{2}+E^{2}\right\rangle
$$

- In QCD the gluon condensate $\left\langle G^{2}\right\rangle \neq 0$
- One could anticipate: $\rho_{0} \sim\left\langle H^{2}+E^{2}\right\rangle$?
- $I_{2}=I_{\text {mech }}+I_{\text {magn }} \quad$ valid for $Q C D!$
$I_{\text {mech }}=\left\langle J_{z}^{2}\right\rangle-\left(\left\langle J_{z}\right\rangle\right)^{2}$
$I_{\text {magn }}=\frac{1}{3} \int d^{3} x r^{2}\left\langle H^{2}\right\rangle$

Calculation of free energy on the lattice

- $F=-T \log Z$ impossible to calculate on the lattice
$-\frac{\partial F}{\partial \beta} \sim\langle\Delta s(\beta)\rangle=s(\beta)_{T}-s(\beta)_{T=0}, \quad \beta=\frac{6}{g^{2}}$
$-\frac{F(T)}{T^{4}} \sim \int_{\beta_{0}}^{\beta_{1}} d \beta^{\prime}\left\langle\Delta s\left(\beta^{\prime}\right)\right\rangle$

Moment of inertia of gluon plasma

- $I(T, R)=-F_{0}(T, R) K_{2} R^{2}$
- $I<0$ for $T<1.5 T_{c}$ and $I>0$ for $T>1.5 T_{c}$
- The region of $I<0$ is related to magnetic condensate and the scale anomaly
- We believe that the same is true for QCD

Moment of inertia of gluon plasma

Negative Barnett effect(?)

- $J=I_{2} \Omega=-\left(\frac{\partial F}{\partial \Omega}\right)_{T}$
- $\mathbf{J}=\mathbf{L}+\mathbf{S}, \quad \mathbf{L} \| \boldsymbol{\Omega}$

Conclusion

- Lattice study of rotating gluodynamics has been carried out
- We calculated the moment of inertia of GP. It is negative at temperatures $T<1.5 T_{c}$ and positive at larger temperatures
- We believe that all observed effects remain in QCD

Conclusion

- Lattice study of rotating gluodynamics has been carried out
- We calculated the moment of inertia of GP. It is negative at temperatures $T<1.5 T_{c}$ and positive at larger temperatures
- We believe that all observed effects remain in QCD

THANK YOU!

[^0]: JETP Lett. 117 (2023) 9, 639-644, , e-Print: 2303.03147 [hep-lat] accepted to Phys.Lett.B, e-Print: 2310.16036 [hep-ph]

 * next talk by Artem Roenko

